
Heka Documentation
Release 0.7.3

Mozilla

October 30, 2014

Contents

1 hekad 3

2 hekad Command Line Options 5
2.1 Installing . 5
2.2 Getting Started . 7
2.3 Configuring hekad . 25
2.4 Inputs . 29
2.5 Decoders . 39
2.6 Filters . 53
2.7 Encoders . 63
2.8 Outputs . 68
2.9 Monitoring Internal State . 77
2.10 Extending Heka . 78
2.11 Heka Message . 87
2.12 Message Matcher Syntax . 89
2.13 Sandbox . 91
2.14 Testing Heka . 120
2.15 Configuring TLS . 122

3 Indices and tables 125

i

ii

Heka Documentation, Release 0.7.3

Heka is an open source stream processing software system developed by Mozilla. Heka is a “Swiss Army Knife” type
tool for data processing, useful for a wide variety of different tasks, such as:

• Loading and parsing log files from a file system.

• Accepting statsd type metrics data for aggregation and forwarding to upstream time series data stores such as
graphite or InfluxDB.

• Launching external processes to gather operational data from the local system.

• Performing real time analysis, graphing, and anomaly detection on any data flowing through the Heka pipeline.

• Shipping data from one location to another via the use of an external transport (such as AMQP) or directly (via
TCP).

• Delivering processed data to one or more persistent data stores.

The following resources are available to those who would like to ask questions, report problems, or learn more:

• Mailing List: https://mail.mozilla.org/listinfo/heka

• Issue Tracker: https://github.com/mozilla-services/heka/issues

• Github Project: https://github.com/mozilla-services/heka/

• IRC: #heka channel on irc.mozilla.org

Heka is a heavily plugin based system. There are five different types of Heka plugins:

• Inputs

Input plugins acquire data from the outside world and inject it into the Heka pipeline. They can do this by reading
files from a file system, actively making network connections to acquire data from remote servers, listening on
a network socket for external actors to push data in, launching processes on the local system to gather arbitrary
data, or any other mechanism. They must be written in Go.

• Decoders

Decoder plugins convert data that comes in through the Input plugins to Heka’s internal Message data structure.
Typically decoders are responsible for any parsing, deserializing, or extracting of structure from unstructured
data that needs to happen. They can be written entirely in Go, or the core logic can be written in sandboxed Lua
code.

• Filters

Filter plugins are Heka’s processing engines. They are configured to receive messages matching certain specific
characteristics (using Heka’s Message Matcher Syntax) and are able to perform arbitrary monitoring, aggrega-
tion, and/or processing of the data. Filters are also able to generate new messages that can be reinjected into
the Heka pipeline, such as summary messages containing aggregate data, notification messages in cases where
suspicious anomalies are detected, or circular buffer data messages that will show up as real time graphs in
Heka’s dashboard. Filters can be written entirely in Go, or the core logic can be written in sandboxed Lua code.
It is also possible to configure Heka to allow Lua filters to be dynamically injected into a running Heka instance
with needing to reconfigure or restart the Heka process, nor even to have shell access to the server on which
Heka is running.

• Encoders

Encoder plugins are the inverse of Decoders. They generate arbitrary byte streams using data extracted from
Heka Message structs. Encoders are embedded within Output plugins; Encoders handle the serialization, Out-
puts handle the details of interacting with the outside world. They can be written entirely in Go, or the core
logic can be written in sandboxed Lua code.

• Outputs

Contents 1

https://mozilla.org
https://github.com/etsy/statsd/
http://graphite.wikidot.com/
http://influxdb.org/
https://mail.mozilla.org/listinfo/heka
https://github.com/mozilla-services/heka/issues
https://github.com/mozilla-services/heka/

Heka Documentation, Release 0.7.3

Output plugins send data that has been serialized by an Encoder to some external destination. They handle all
of the details of interacting with the network, filesystem, or any other outside resource. They are, like Filters,
configured using Heka’s Message Matcher Syntax so they will only receive and deliver messages matching
certain characteristics. They must be written in Go.

Information about developing plugins in Go can be found in the Extending Heka section. Details about using Lua
sandboxes for Decoder, Filter, and Encoder plugins can be found in the Sandbox section.

2 Contents

CHAPTER 1

hekad

The core of the Heka system is the hekad daemon. A single hekad process can be configured with any number of
plugins, simultaneously performing a variety of data gathering, processing, and shipping tasks. Details on how to
configure a hekad daemon are in the Configuring hekad section.

3

Heka Documentation, Release 0.7.3

4 Chapter 1. hekad

CHAPTER 2

hekad Command Line Options

-version Output the version number, then exit.

-config config_path Specify the configuration file or directory to use; the default is /etc/hekad.toml. If config_path
resolves to a directory, all files in that directory must be valid TOML files. (See hekad.config(5).)

Contents:

2.1 Installing

2.1.1 Binaries

hekad releases are available on the Github project releases page. Binaries are available for Linux and OSX, with
packages for Debian and RPM based distributions.

2.1.2 From Source

hekad requires a Go work environment to be setup for the binary to be built; this task is automated by the build
process. The build script will override the Go environment for the shell window it is executed in. This creates an
isolated environment that is intended specifically for building and developing Heka. The build script should be be
run every time a new shell is opened for Heka development to ensure the correct dependencies are found and being
used. To create a working hekad binary for your platform you’ll need to install some prerequisites. Many of these are
standard on modern Unix distributions and all are available for installation on Windows systems.

Prerequisites (all systems):

• CMake 2.8.7 or greater http://www.cmake.org/cmake/resources/software.html

• Git http://git-scm.com/download

• Go 1.3 or greater http://code.google.com/p/go/downloads/list

• Mercurial http://mercurial.selenic.com/downloads/

• Protobuf 2.3 or greater (optional - only needed if message.proto is modified)
http://code.google.com/p/protobuf/downloads/list

• Sphinx (optional - used to generate the documentation) http://sphinx-doc.org/

Prerequisites (Unix):

• make

5

https://github.com/mozilla-services/heka/releases
http://www.cmake.org/cmake/resources/software.html
http://git-scm.com/download
http://code.google.com/p/go/downloads/list
http://mercurial.selenic.com/downloads/
http://code.google.com/p/protobuf/downloads/list
http://sphinx-doc.org/

Heka Documentation, Release 0.7.3

• gcc

• patch

• dpkg (optional)

• rpmbuild (optional)

• packagemaker (optional)

Prerequisites (Windows):

• MinGW http://sourceforge.net/projects/tdm-gcc/

Build Instructions

1. Check out the heka repository:

git clone https://github.com/mozilla-services/heka

2. Run build in the heka directory

cd heka
source build.sh # Unix (or ‘. build.sh‘; must be sourced to properly setup the environment)
build.bat # Windows

You will now have a hekad binary in the build/heka/bin directory.

3. (Optional) Run the tests to ensure a functioning hekad.

ctest # All, see note
Or use the makefile target
make test # Unix
mingw32-make test # Windows

Note: In addition to the standard test build target, ctest can be called directly providing much greater control over the
tests being run and the generated output (see ctest –help). i.e., ‘ctest -R pi’ will only run the pipeline unit test.

Clean Targets

• clean-heka - Use this target any time you change branches or pull from the Heka repository, it will ensure the
Go workspace is in sync with the repository tree.

• clean - You will never want to use this target (it is autogenerated by cmake), it will cause all external depen-
dencies to be re-fetched and re-built. The best way to ‘clean-all’ is to delete the build directory and re-run the
build.(sh|bat) script.

Build Options

There are two build customization options that can be specified during the cmake generation process.

• INCLUDE_MOZSVC (bool) Include the Mozilla services plugins (default Unix: true, Windows: false).

• BENCHMARK (bool) Enable the benchmark tests (default false)

For example: to enable the benchmark tests in addition to the standard unit tests type ‘cmake -DBENCHMARK=true
..’ in the build directory.

6 Chapter 2. hekad Command Line Options

http://sourceforge.net/projects/tdm-gcc/

Heka Documentation, Release 0.7.3

2.1.3 Building hekad with External Plugins

It is possible to extend hekad by writing input, decoder, filter, or output plugins in Go (see Extending Heka).
Because Go only supports static linking of Go code, your plugins must be included with and registered into
Heka at compile time. The build process supports this through the use of an optional cmake file {heka
root}/cmake/plugin_loader.cmake. A cmake function has been provided add_external_plugin taking the repository
type (git, svn, or hg), repository URL, the repository tag to fetch, and an optional list of sub-packages to be initialized.

add_external_plugin(git https://github.com/mozilla-services/heka-mozsvc-plugins 6fe574dbd32a21f5d5583608a9d2339925edd2a7)
add_external_plugin(git https://github.com/example/path <tag> util filepath)
add_external_plugin(git https://github.com/bellycard/heka-sns-input :local)
The ’:local’ tag is a special case, it copies {heka root}/externals/{plugin_name} into the Go
work environment every time ‘make‘ is run. When local development is complete, and the source
is checked in, the value can simply be changed to the correct tag to make it ’live’.
i.e. {heka root}/externals/heka-sns-input -> {heka root}/build/heka/src/github.com/bellycard/heka-sns-input

The preceeding entry clones the heka-mozsvc-plugins git repository into the Go work environment, checks out SHA
6fe574dbd32a21f5d5583608a9d2339925edd2a7, and imports the package into hekad when make is run. By adding an
init() function in your package you can make calls into pipeline.RegisterPlugin to register your plugins with Heka’s
configuration system.

2.1.4 Creating Packages

Installing packages on a system is generally the easiest way to deploy hekad. These packages can be easily created
after following the above From Source directions:

1. Run cpack to build the appropriate package(s) for the current system:

cpack # All
Or use the makefile target
make package # Unix (no deb, see below)
make deb # Unix (if dpkg is available see below)
mingw32-make package # Windows

The packages will be created in the build directory.

Note: You will need rpmbuild installed to build the rpms.

See also:

Setting up an rpm-build environment

Note: For file name convention reasons, deb packages won’t be created by running cpack or make package, even on
a Unix machine w/ dpkg installed. Instead, running source build.sh on such a machine will generate a Makefile with a
separate ‘deb’ target, so you can run make deb to generate the appropriate deb package.

2.2 Getting Started

A brand new Heka installation is something of a blank canvas, full of promise but not actually interesting on its own.
One of the challenges with a highly flexible tool like Heka is that newcomers can easily become overwhelmed by the
wide assortment of features and options, making it difficult to understand exactly how to begin. This document will
try to address this issue by taking readers through the process of configuring a hekad installation that demonstrates a
number of Heka’s common use cases, hopefully providing enough context that users will be able to then adjust and
extend the given examples to meet their own particular needs.

2.2. Getting Started 7

http://golang.org/doc/effective_go.html#init
http://wiki.centos.org/HowTos/SetupRpmBuildEnvironment

Heka Documentation, Release 0.7.3

When we’re done our configuration will have Heka performing the following tasks:

• Accepting data from a statsd client over UDP.

• Forwarding aggregated statsd data on to both a Graphite Carbon server and an InfluxDB server.

• Generating a real time graph of a specific set of statsd statistics.

• Loading and parsing a rotating stream of nginx access log files.

• Generating JSON structures representing each request loaded from the Nginx log files and sending them on to
an ElasticSearch database cluster.

• Generating a real time graph of the HTTP response status codes of the requests that were recorded in the nginx
access logs.

• Performing basic algorithmic anomaly detection on HTTP status code data, sending notification messages via
email when such events occur.

But before we dig in to that, let’s make sure everything is working by trying out a very simple setup.

2.2.1 Simplest Heka Config

One of the simplest Heka configurations possible is one that loads a single file from the local file system and then
outputs the contents of that file to stdout. The following is an example of such a configuration:

[LogstreamerInput]
log_directory = "/var/log"
file_match = ’auth\.log’

[PayloadEncoder]
append_newlines = false

[LogOutput]
message_matcher = "TRUE"
encoder = "PayloadEncoder"

Heka is configured via one or more TOML format configuration files, each of which is comprised of one or more
sections. The configuration above consists of three sections, the first of which specifies a LogstreamerInput, Heka’s
primary mechanism for loading files from the local file system. This one is loading /var/log/auth.log, but you can
change this to load any other file by editing the log_directory setting to point to the folder where the file lives and
the file_match setting to a regular expression that uniquely matches the filename. Note the single quotes (‘auth\.log’)
around the regular expression; this is TOML’s way of specifying a raw string, which means we don’t need to escape
the regular expression’s backslashes like we would with a regular string enclosed by double quotes (“auth\\.log”).

In most real world cases a LogstreamerInput would include a decoder setting, which would parse the contents of the
file to extract data from the text format and map them onto a Heka message schema. In this case, however, we stick
with the default behavior, where Heka creates a new message for each line in the log file, storing the text of the log
line as the payload of the Heka message.

The next two sections tell Heka what to do with the messages that the LogstreamerInput is generating. The LogOutput
simply writes data out to the Heka process’s stdout. We set message_matcher = “TRUE” to specify that this output
should capture every single message that flows through the Heka pipeline. The encoder setting tells Heka to use the
PayloadEncoder that we’ve configured, which extracts the payload from each captured message and uses that as the
raw data that the output will send.

To see whether or not you have a functional Heka system, you can create a file called sanity_check.toml and paste in
the above configuration, adjusting the LogstreamerInput’s settings to point to another file if necessary. Then you can
run Heka using hekad -config=/path/to/sanity_check.toml, and you should see the contents of the log file printed out

8 Chapter 2. hekad Command Line Options

https://github.com/toml-lang/toml

Heka Documentation, Release 0.7.3

to the console. If any new lines are written to the log file that you’re loading, Heka will notice and will write them out
to stdout in real time.

Note that the LogstreamerInput keeps track of how far it has gotten in a particular file, so if you stop Heka using
ctrl-c and then restart it you will not see the same data. Heka stores the current location in a “seekjournal” file, at
/var/cache/hekad/logstreamer/LogstreamerInput by default. If you delete this file and then restart Heka you should
see it load the entire file from the beginning again.

Congratulations! You’ve now successfully run Heka with a full, working configuration. But clearly there are much
simpler tools to use if all you want to do is write the contents of a log file out to stdout. Now that we’ve got an initial
success under our belt, let’s take a deeper dive into a much more complex Heka configuration that actually handles
multiple real world use cases.

2.2.2 Global Configuration

As mentioned above, Heka is configured using TOML configuration files. Most sections of the TOML configuration
contain information relevant to one of Heka’s plugins, but there is one section entitled hekad which allows you to
tweak a number of Heka’s global configuration options. In many cases the defaults for most of these options will
suffice, and your configuration won’t need a hekad section at all. A few of the options are worth looking at here,
however:

• maxprocs (int, default 1): This setting corresponds to Go’s GOMAXPROCS environment variable. It speci-
fies how many CPU cores the hekad process will be allowed to use. The best choice for this setting depends
on a number of factors such as the volume of data Heka will be processing, the number of cores on the
machine on which Heka is running, and what other tasks the machine will be performing. For dedicated
Heka aggregator machines, this should usually be equal to the number of cpu cores available, or perhaps
number of cores minus one, while for Heka processes running on otherwise busy boxes one or two is
probably a better choice.

• base_dir (string, default ‘/var/cache/hekad’ or ‘c:\var\cache\hekad’): In addition to the location of the con-
figuration files, there are two directories that are important to a running hekad process. The first of these
is called the base_dir, which is a working directory where Heka will be storing information crucial to its
functioning, such as seekjournal files to track current location in a log stream, or sandbox filter aggregation
data that is meant to survive between Heka restarts. It is of course important that the user under which the
hekad process is running has write access to the base_dir.

• share_dir (string, default ‘/usr/share/heka’ or ‘c:\usr\share\heka’): The second directory important to
Heka’s functioning is called the share_dir. This is a place where Heka expects to find certain static
resources that it needs, such as the HTML/javascript source code used by the dashboard output, or the
source code to various Lua based plugins. The user owning the hekad process should have read access to
this folder, but not write access.

It’s worth noting that while Heka defaults to expecting to find certain resources in the base_dir and/or the share_dir
folders, it is nearly always possible to override the location of a particular resource on a case by case basis in the plugin
configuration. For instance, the filename option in a SandboxFilter specifies the filesystem path to the Lua source code
for that filter. If it is specified as a relative path, the path will be computed relative to the share_dir. If it is specified as
an absolute path, the absolute path will be honored.

For our example, we’re going to keep the defaults for most global options, but we’ll bump the maxprocs setting from
1 to 2 so we can get at least some parallel behavior:

[hekad]
maxprocs = 2

2.2. Getting Started 9

Heka Documentation, Release 0.7.3

2.2.3 Accepting Statsd Data

Once we’ve got Heka’s global settings configured, we’re ready to start on the plugins. The first thing we’ll tackle is
getting Heka set up to accept data from statsd clients. This involves two different plugins, a StatsdInput that accepts
network connections and parses the received stats data, and a StatAccumInput that will accept the data gathered by
the StatsdInput, perform the necessary aggregation, and periodically generate ‘statmetric’ messages containing the
aggregated data.

The configuration for these plugins is quite simple:

[StatsdInput]

[StatAccumInput]
ticker_interval = 1
emit_in_fields = true

These two TOML sections tell Heka that it should include a StatsdInput and a StatAccumInput. The StatsdInput uses
the default value for every configuration setting, while the StatAccumInput overrides the defaults for two of its settings.
The ticker_interval = 1 setting means that the statmetric messages will be generated once every second instead of the
default of once every five seconds, while the emit_in_fields = true setting means that the aggregated stats data will
be embedded in the dynamic fields of the generated statmetric messages, in addition to the default of embedding the
graphite text format in the message payload.

This probably seems pretty straightforward, but there are actually some subtleties hidden in there that are important
to point out. First, it’s not immediately obvious, but there is an explicit connection between the two plugins. The
StatsdInput has a stat_accum_name setting, which we didn’t need to set because it defaults to ‘StatAccumInput’. The
following configuration is exactly equivalent:

[StatsdInput]
stat_accum_name = "StatAccumInput"

[StatAccumInput]
ticker_interval = 1
emit_in_fields = true

The next subtlety to note is that we’ve used a common piece of Heka config shorthand by embedding both the name
and the type in the TOML section header. Heka lets you do this as a convenience if you don’t need to use a name that
is separate from the type. This doesn’t have to be the case, it’s possible to give a plugin a different name, expressing
the type inside the TOML section instead of in its header:

[statsd_input]
type = "StatsdInput"
stat_accum_name = "stat_accumulator"

[stat_accumulator]
type = "StatAccumInput"
ticker_interval = 1
emit_in_fields = true

The config above is ever so slightly different from the original two, because our plugins now have different name
identifiers, but functionally the behavior is identical to the prior versions. Being able to separate a plugin name from
its type is important in cases where you want more than one instance of the same plugin type. For instance, you’d use
the following configuration if you wanted to have a second StatsdInput listening on port 8126 in addition to the default
on port 8125:

[statsd_input_8125]
type = "StatsdInput"
stat_accum_name = "stat_accumulator"

10 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

[statsd_input_8126]
type = "StatsdInput"
stat_accum_name = "stat_accumulator"
address = "127.0.0.1:8126"

[stat_accumulator]
type = "StatAccumInput"
ticker_interval = 1
emit_in_fields = true

We don’t need two StatsdInputs for our example, however, so for simplicity we’ll go with the most concise spelling.

2.2.4 Forwarding Aggregated Stats Data

Collecting stats alone doesn’t actually provide much value, we want to be able to actually see the data that has been
gathered. Statsd servers are typically used to aggregate incoming statistics and then periodically deliver the totals to
an upstream time series database, usually Graphite, although InfluxDB is rapidly growing in popularity. For Heka to
replace a standalone statsd server it needs to be able to do the same.

To understand how this will work, we need to step back a bit to look at how Heka handles message routing. First, data
enters the Heka pipeline through an input plugin. Then it needs to be converted from its original raw format into a
message object that Heka knows how to work with. Usually this is done with a decoder plugin, although in the statsd
example above instead the StatAccumInput itself is periodically generating statmetric messages.

After the data has been marshaled into one (or more) message(s), the message is handed to Heka’s internal message
router. The message router will then iterate through all of the registered filter and output plugins to see which ones
would like to process the message. Each filter and output provides a message matcher to specify which messages it
would like to receive. The router hands each message to each message matcher, and if there’s a match then the matcher
in turn hands the message to the plugin.

To return to our example, we’ll start by setting up a CarbonOutput plugin that knows how to deliver messages to an
upstream Graphite Carbon server. We’ll configure it to receive the statmetric messages generated by the StatAccumIn-
put:

[CarbonOutput]
message_matcher = "Type == ’heka.statmetric’"
address = "mycarbonserver.example.com:2003"
protocol = "udp"

Any messages that pass through the router with a Type field equal to heka.statmetric (which is what the StatAccu-
mOutput emits by default) will be handed to this output, which will in turn deliver it over UDP to the specified carbon
server address. This is simple, but it’s a fundamental concept. Nearly all communication within Heka happens using
Heka message objects being passed through the message router and being matched against the registered matchers.

Okay, so that gets us talking to Graphite. What about InfluxDB? InfluxDB has an extension that allows it to support
the graphite format, so we could use that and just set up a second CarbonOutput:

[carbon]
type = "CarbonOutput"
message_matcher = "Type == ’heka.statmetric’"
address = "mycarbonserver.example.com:2003"
protocol = "udp"

[influx]
type = "CarbonOutput"
message_matcher = "Type == ’heka.statmetric’"
address = "myinfluxserver.example.com:2003"
protocol = "udp"

2.2. Getting Started 11

http://graphite.readthedocs.org/en/latest/index.html
http://influxdb.com/
http://graphite.readthedocs.org/en/latest/carbon-daemons.html

Heka Documentation, Release 0.7.3

A couple of things to note here. First, don’t get confused by the type = “CarbonOutput”, which is specifying the
type of the plugin we are configuring, and the “Type” in message_matcher = “Type == ‘heka.statmetric”’, which is
referring to the Type field of the messages that are passing through the Heka router. They’re both called “type”, but
other than that they are unrelated.

Second, you’ll see that it’s fine to have more than one output (and/or filter, for that matter) plugin with identical
message_matcher settings. The router doesn’t care, it will happily give the same message to both of them, and any
others that happen to match.

This will work, but it’d be nice to not have to install the graphite compatibility extension for InfluxDB, and instead
just use their native HTTP API. For this, we can instead use our handy HttpOutput:

[CarbonOutput]
message_matcher = "Type == ’heka.statmetric’"
address = "mycarbonserver.example.com:2003"
protocol = "udp"

[statmetric_influx_encoder]
type = "SandboxEncoder"
filename = "lua_encoders/statmetric_influx.lua"

[influx]
type = "HttpOutput"
message_matcher = "Type == ’heka.statmetric’"
address = "http://myinfluxserver.example.com:8086/db/stats/series"
encoder = "statmetric_influx_encoder"
username = "influx_username"
password = "influx_password"

The HttpOutput configuration above will also capture statmetric messages, and will then deliver the data over HTTP
to the specified address where InfluxDB is listening. But wait! what’s all that statmetric-influx-encoder stuff? I’m
glad you asked...

2.2.5 Encoder Plugins

We’ve already briefly mentioned how, on the way in, raw data needs to be converted into a standard message format
that Heka’s router, filters, and outputs are able to process. Similarly, on the way out, data must be extracted from the
standard message format and serialized into whatever format is required by the destination. This is typically achieved
through the use of encoder plugins, which take Heka messages as input and generate as output raw bytes that an output
plugin can send over the wire. The CarbonOutput doesn’t specify an encoder because it assumes that the Graphite data
will be in the message payload, where the StatAccumInput puts it, but most outputs need an encoder to be specified so
they know how to generate their data stream from the messages that are received.

In the InfluxDB example above, you can see that we’ve defined a statmetric_influx_encoder, of type SandboxEncoder.
A “Sandbox” plugin is one where the core logic of the plugin is implemented in Lua and is run in a protected sandbox.
Heka has support for SandboxDecoder, SandboxFilter, and SandboxEncoder plugins. In this instance, we’re using a
SandboxEncoder implementation provided by Heka that knows how to extract data from the fields of a heka.statmetric
message and use that data to generate JSON in a format that will be understood by InfluxDB (see StatMetric Influx
Encoder).

This separation of concerns between encoder and output plugins allows for a great deal of flexibility. It’s easy to write
your own SandboxEncoder plugins to generate any format needed, allowing the same HttpOutput implementation can
be used for multiple HTTP-based back ends, rather than needing a separate output plugin for each service. Also, the
same encoder can be used with different outputs. If, for instance, we wanted to write the InfluxDB formatted data to a
file system file for later processing, we could use the statmetric_influx encoder with a FileOutput to do so.

12 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

2.2.6 Real Time Stats Graph

While both Graphite and InfluxDB provide mechanisms for displaying graphs of the stats data they receive, Heka is
also able to provide graphs of this data directly. These graphs will be updated in real time, as the data is flowing
through Heka, without the latency of the data store driven graphs. The following config snippet shows how this is
done:

[stat_graph]
type = "SandboxFilter"
filename = "lua_filters/stat_graph.lua"
ticker_interval = 1
preserve_data = true
message_matcher = "Type == ’heka.statmetric’"

[stat_graph.config]
num_rows = 300
secs_per_row = 1
stats = "stats.counters.000000.count stats.counters.000001.count stats.counters.000002.count"
stat_labels = "counter_0 counter_1 counter_2"
preservation_version = 0

[DashboardOutput]
ticker_interval = 1

There’s a lot going on in just a short bit of configuration here, so let’s consider it one piece at a time to understand
what’s happening. First, we’ve got a stat_graph config section, which is telling Heka to start up a SandboxFilter plugin,
a filter plugin with the processing code implemented in Lua. The filename option points to a filter implementation that
ships with Heka. This filter implementation knows how to extract data from statmetric messages and store that data in
a circular buffer data structure. The preserve_data option tells Heka that the all global data in this filter (the circular
buffer data, in this case) should be flushed out to disk if Heka is shut down, so it can be reloaded again when Heka is
restarted. And the ticker_interval option is specifying that our filter will be emitting an output message back into the
router once every second.

After that we have a stat_graph.config section. This isn’t specifying a new plugin, this is nested configuration, a
subsection of the outer stat_graph section. (Note that the section nesting is specified by the use of the stat_graph.
prefix in the section name; the indentation helps readability, but has no impact on the semantics of the configuration.)
The stat-graph section configures the SandboxFilter and tells it what Lua source code to use, the stat_graph.config
section is passed in to the Lua source code for further customization of the filter’s behavior.

So what is contained in this nested configuration? The first two options, num_rows and secs_per_row, are configuring
the circular buffer data structure that the filter will use to store the stats data. It can be helpful to think of circular
buffer data structures as a spreadsheet. Our spreadsheet will have 300 rows, and each row will represent one second
of accumulated data, so at any given time we will be holding five minutes worth of stats data in our filter. The next
two options, stats and stat_labels, tell Heka which statistics we want to graph and provide shorter labels for use in the
graph legend. Finally the preservation_version section allows us to version our data structures. This is needed because
our data structures might change. If you let this filter run for a while, gathering data, and then shut down Heka, the 300
rows of circular buffer data will be written to disk. If you then change the num_rows setting and try to restart Heka the
filter will fail to start, because the 300 row size of the preserved data won’t match the new size that you’ve specified.
In this case you would increment the preservation_version value from 0 to 1, which will tell Heka that the preserved
data is no longer valid and the data structures should be created anew.

2.2.7 Heka Dashboard

At this point it’s useful to notice that, while the SandboxFilter gathers the data that we’re interested in and packages it
up an a format that’s useful for graphing, it doesn’t actually do any graphing. Instead, it periodically creates a message

2.2. Getting Started 13

Heka Documentation, Release 0.7.3

of type heka.sandbox-output, containing the current circular buffer data, and injects that message back into Heka’s
message router. This is where the DashboardOutput that we’ve configured comes in.

Heka’s DashboardOutput is configured by default to listen for heka.sandbox-output messages (along with a few other
message types, which we’ll ignore for now). When it receives a sandbox output message, it will examine the contents
of the message, and if the message contains circular buffer data it will automatically generate a real time graph of that
data.

By default, the dashboard UI is available by pointing a web browser at port 4352 of the machine where Heka is
running. The first page you’ll see is the Health report, which provides an overview of the plugins that are configured,
along with some information about how messages are flowing through the Heka pipeline:

... and scrolling further down the page ...

14 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

In the page header is a Sandboxes link, which will take you to a listing of all of the running SandboxFilter plugins,
along with a list of the outputs they emit. Clicking on this we can see our stat_graph filter and the Stats circular buffer
(“CBUF”) output:

2.2. Getting Started 15

Heka Documentation, Release 0.7.3

If you click on the filter name stat_graph, you’ll see a page showing detailed information about the performance of
that plugin, including how many messages have been processed, the average amount of time a message matcher takes
to match a message, the average amount of time spent processing a message, and more:

16 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

Finally, clicking on the Stats link will take us to the actual rendered output, a line graph that updates in real time,
showing the values of the specific counter stats that we have specified in our stat_graph SandboxFilter configuration:

2.2. Getting Started 17

Heka Documentation, Release 0.7.3

Other stats can be added to this graph by adjusting the stats and stat_labels values for our existing stat_graph filter
config, although if we do so we’ll have to bump the preservation_version to tell Heka that the previous data structures
are no longer valid. If you’d like to generate additional graphs using other statistics, this can be done by including addi-
tional SandboxFilter sections using the same stat_graph.lua source code (i.e. filename = “lua_filters/stat_graph.lua”).

It also should be mentioned that, while the stat_graph.lua filter we’ve been using only emits a single output graph,
it is certainly possible for a single filter to generate multiple graphs. It’s also possible for SandboxFilters to emit
other types of output, such as raw JSON data, which the DashboardOutput will happily serve as raw text. This can
be very useful for generating ad-hoc API endpoints based on the data that Heka is processing. Dig in to our Sandbox
documentation to learn more about writing your own Lua filters using our Sandbox API.

2.2.8 Loading and Parsing Nginx Log Files

For our next trick, we’ll be loading an Nginx HTTP server’s access log files and extracting information about each
HTTP request logged therein, storing it in a more structured manner in the fields of a Heka message. The first step
is telling Heka where it can find the Nginx access log file. Except that the Nginx log typically isn’t just a single file,
it’s a series of files subject to site specific rotation schemes. On the author’s Ubuntu-ish system, for instance, the
/var/log/nginx directory looks like this, at the time of writing:

access.log
access.log.1
access.log.2.gz
access.log.3.gz
access.log.4.gz
access.log.5.gz
access.log.6.gz

18 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

access.log.7.gz
access.log.8.gz
access.log.9.gz
error.log

This is a common rotation scheme, but there are many others out there. And in cases where many domains are being
hosted, there might be several sets of log files, one for each domain, each distinguished from the others by file and/or
folder name. Luckily Heka’s Logstreamer Input provides a mechanism for handling all of these cases and more. The
LogstreamerInput already has extensive documentation, so we won’t go into exhaustive detail here, instead we’ll show
an example config that correctly handles the above case:

[nginx_access_logs]
type = "LogstreamerInput"
parser_type = "token"
decoder = "nginx_access_decoder"
log_directory = "/var/log/nginx"
file_match = ’access\.log\.?(?P<Index>\d+)?(.gz)?’
priority = ["^Index"]

The parser_type option above tells Heka that each record will be delimited by a one character token, in this case
the default token n. If our files were delimited by a different character we could use a delimiter option to specify
an alternate. (For log files where a single record spans multiple lines, we can use parser_type = “regexp” and then
provide a regular expression that describes the record boundary.) The log_directory option tells where the files we’re
interested in live. The file_match is a regular expression that matches all of the files comprising the log stream. In this
case, they all must start with access.log, after which they can (optionally) be followed by a dot (.), then (optionally,
again) one or two digits, then (optionally, one more time) a gzip extension (.gz). Any digits that are found are captured
as the Index match group, and the priority option specifies that we use this Index value to determine the order of the
files. The leading carat character (^) reverses the order of the priority, since in our case lower digits mean newer files.

The LogstreamerInput will use this configuration data to find all of the relevant files, then it will start working its way
through the entire stream of files from oldest to newest, tracking its progress along the way. If Heka is stopped and
restarted, it will pick up where it left off, even if that file was rotated during the time that Heka was down. When it
gets to the end of the newest file, it will follow along, loading new lines as they’re added, and noticing when the file is
rotated so it can hop forward to start loading the newer one.

Which then brings us to the decoder option. This tells Heka which decoder plugin the LogstreamerInput will be using
to parse the loaded log files. The nginx_access_decoder configuration is as follows:

[nginx_access_decoder]
type = "SandboxDecoder"
filename = "lua_decoders/nginx_access.lua"

[nginx_access_decoder.config]
log_format = ’$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent"’
type = "nginx.access"

Some of this should be looking familiar by now. This is a SandboxDecoder, which means that it is a decoder plugin
with the actual parsing logic implemented in Lua. The outer config section configures the SandboxDecoder itself,
while the nested section provides additional config information that is passed in to the Lua code.

While it’s certainly possible to write your own custom Lua parsing code, in this case we are again using a plugin
provided by Heka, specifically designed for parsing Nginx access logs. But Nginx doesn’t have a single access log
format, the exact output is dynamically specified by a log_format directive in the Nginx configuration. Luckily Heka’s
decoder is quite sophisticated; all you have to do to parse your access log output is copy the appropriate log_format
directive out of the Nginx configuration file and paste it into the log_format option in your Heka decoder config, as
above, and Heka will use the magic of LPEG to dynamically create a grammar that will extract the data from the log
lines and store them in Heka message fields. Finally the type option above lets you specify what the Type field should
be set to on the messages generated by this decoder.

2.2. Getting Started 19

http://www.inf.puc-rio.br/~roberto/lpeg/

Heka Documentation, Release 0.7.3

2.2.9 Sending Nginx Data to ElasticSearch

One common use case people are interested in is taking the data extracted from their HTTP server logs and sending it
on to ElasticSearch, often so they can peruse that data using dashboards generated by the excellent dashboard creation
tool Kibana. We’ve handled loading and parsing the information with our input and decoder configuration above, now
let’s look at the other side with the following output and encoder settings:

[ESJsonEncoder]
es_index_from_timestamp = true
type_name = "%{Type}"

[ElasticSearchOutput]
server = "elasticsearch.example.com:9200"
message_matcher = "Type == ’nginx.access’"
encoder = "ESJsonEncoder"
flush_interval = 50

Working backwards, we’ll first look at the ElasticSearchOutput configuration. The server setting indicates where
ElasticSearch is listening. The message_matcher tells us we’ll be catching messages with a Type value of nginx.access,
which you’ll recall was set in the decoder configuration we discussed above. The flush_interval setting specifies that
we’ll be batching our records in the output and flushing them out to ElasticSearch every 50 milliseconds.

Which leaves us with the encoder setting, and the corresponding ESJsonEncoder section. The ElasticSearchOutput
uses ElasticSearch’s Bulk API to tell ElasticSearch how the documents should be indexed, which means that each
document insert consists of a small JSON object satisfying the Bulk API followed by another JSON object containing
the document itself. At the time of writing, Heka provides three encoders that will extract data from a Heka message
and generate an appropriate Bulk API header, the ESJsonEncoder we use above, which generates a clean document
schema based on the schema of the message that is being encoded; the ESLogstashV0Encoder, which uses the “v0”
schema format defined by Logstash (specifically intended for HTTP request data, natively supported by Kibana), and
the ESPayloadEncoder, which assumes that the message payload will already contain a fully formed JSON document
ready for sending to ElasticSearch, and just prepends the necessary Bulk API segement.

In our ESJsonEncoder section, we’re mostly adhering to the default settings. By default, this decoder inserts docu-
ments into an ElasticSearch index based on the current date: heka-YYYY.MM.DD (spelled as heka-%{2006.01.02} in
the config). The es_index_from_timestamp = true option tells Heka to use the timestamp from the message when de-
termining the date to use for the index name, as opposed to the default behavior which uses the system clock’s current
time as the basis. The type option tells Heka what ElasticSearch record type should be used for each record. This
option supports interpolation of various values from the message object; in the example above the message’s Type
field will be used as the ElasticSearch record type name.

2.2.10 Generating HTTP Status Code Graphs

ElasticSearch and Kibana provide a number of nice tools for graphing and querying the HTTP request data that is
being parsed from our Nginx logs but, as with the stats data above, it would be nice to get real time graphs of some of
this data directly from Heka. As you might guess, Heka already provides plugins specifically for this purpose:

[http_status]
type = "SandboxFilter"
filename = "lua_filters/http_status.lua"
ticker_interval = 1
preserve_data = true
message_matcher = "Type == ’nginx.access’"

[http_status.config]
sec_per_row = 1

20 Chapter 2. hekad Command Line Options

http://www.elasticsearch.org/
http://www.elasticsearch.org/overview/kibana/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html
http://logstash.net/

Heka Documentation, Release 0.7.3

rows = 1800
perservation_version = 0

As mentioned earlier, graphing in Heka is accomplished through the cooperation of a filter which emits messages
containing circular buffer data, and the DashboardOutput which consumes those messages and displays the data on
a graph. We already configured a DashboardOutput earlier, so now we just need to add a filter that catches the
nginx.access messages and aggregates the data into a circular buffer.

Heka has a standard message format that it uses for data that represents a single HTTP request, used by the Nginx
access log decoder that is parsing our log files. In this format, the status code of the HTTP response is stored in
a dynamic message field called, simply, status. The above filter will create a circular buffer data structure to store
these response status codes in 6 columns: 100s, 200s, 300s, 400s, 500s, and unknown. Similar to before, the nested
configuration tells the filter how many rows of data to keep in the circular buffer and how many seconds of data each
row should represent. It also gives us a preservation_version so we can flag when the data structures have changed.

Once we add this section to our configuration and restart hekad, we should be able to browse to the dashboard UI and
be able to find a graph of the various response status categories that are extracted from our HTTP server logs.

2.2.11 Anomaly Detection

We’re getting close to the end of our journey. All of the data that we want to gather is now flowing through Heka,
being delivered to external data stores for off line processing and analytics, and being displayed in real time graphs by
Heka’s dashboard. The only remaining behavior we’re going to activate is anomaly detection, and the generation of
notifiers based on anomalous events being detected. We’ll start by looking at the anomaly detection piece.

We’ve already discussed how Heka uses a circular buffer library to track time series data and generate graphs in the
dashboard. Well it turns out that the anomaly detection features that Heka provides make use of the same circular
buffer library.

Under the hood, how it works is that you provide an “anomaly config”, which is a string that looks something like a
programming function call. The anomaly config specifies which anomaly detection algorithm should be used. Algo-
rithms currently supported by Heka are a standard deviation rate of change test, and both parametric (i.e. Gaussian)
and non-parametric Mann-Whitney-Wilcoxon tests. Included in the anomaly config is information about which col-
umn in a circular buffer data structure we want to monitor for anomalous behavior. Later, the parsed anomaly config
is passed in to the detection module’s detect function, along with a populated circular buffer data structure, and the
circular buffer data will be analyzed using the specified algorithm.

Luckily, for our use cases, you don’t have to worry too much about all of the details of using the anomaly detection
library, because the SandboxFilters we’ve been using have already taken care of the hard parts. All we need to do is
create an anomaly config string and add that to our config sections. For instance, here’s an example of how we might
monitor our HTTP response status codes:

[http_status]
type = "SandboxFilter"
filename = "lua_filters/http_status.lua"
ticker_interval = 1
preserve_data = true
message_matcher = "Type == ’nginx.access’"

[http_status.config]
sec_per_row = 1
rows = 1800
perservation_version = 0
anomaly_config = ’roc("HTTP Status", 2, 15, 0, 1.5, true, false) mww_nonparametric("HTTP Status", 5, 15, 10, 0.8)’

Everything is the same as our earlier configuration, except we’ve added an anomaly_config setting. There’s a lot in
there, so we’ll examine it a piece at a time. The first thing to notice is that there are actually two anomaly configs

2.2. Getting Started 21

https://github.com/mozilla-services/lua_sandbox/blob/dev/docs/circular_buffer.md
http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test

Heka Documentation, Release 0.7.3

specified. You can add as many as you’d like. They’re space delimited here for readability, but that’s not strictly
necessary, the parentheses surrounding the config parameters are enough for Heka to identify them. Next we’ll dive
into the configurations, each in turn.

The first anomaly configuration by itself looks like this:

roc("HTTP Status", 2, 15, 0, 1.5, true, false)

The roc portion tells us that this config is using the rate of change algorithm. Each algorithm has its own set of
parameters, so the values inside the parentheses are those that are required for a rate of change calculation. The first
argument is payload_name, which needs to correspond to the payload_name value used when the message is injected
back into Heka’s message router, which is “HTTP Status” in the case of this filter.

The next argument is the circular buffer column that we should be watching. We’re specifying column 2 here, which a
quick peek at the http_status.lua source code will show you is the column where we’re tracking 200 status codes. The
next value specifies how many intervals (i.e. circular buffer rows) should we use in our analysis window. We’ve said
15, which means that we’ll be examining the rate of change between the values in two 15 second intervals. Specifically,
we’ll be comparing the data in rows 2 through 16 to the data in rows 17 through 31 (we always throw out the current
row because it might not yet be complete).

After that we specify the number of intervals to use in our historical analysis window. Our setting of 0 means we’re
using the entire history, rows 32 through 1800. This is followed by the standard deviation threshold parameter, which
we’ve set to 1.5. So, put together, we’re saying if the rate of change of the number of 200 status responses over the last
two 15 second intervals is more than 1.5 standard deviations off from the rate of change over the 29 minutes before
that, then an anomaly alert should be triggered.

The last two parameters here are boolean values. The first of these is whether or not an alert should be fired in the
event that we stop receiving input data (we’re saying yes), the second whether or not an alert should be fired if we start
receiving data again after a gap (we’re saying no).

That’s the first one, now let’s look at the second:

mww_nonparametric("HTTP Status", 5, 15, 10, 0.8)

The mww_nonparametric tells us, as you might guess, that this config will be using the Mann-Whitney-Wilcoxon
non-parametric algorithm for these computations. This algorithm can be used to identify similarities (or differences)
between multiple data sets, even when those data sets have a non- Gaussian distribution, such as cases where the set
of data points is sparse.

The next argument tells us what column we’ll be looking at. In this case we’re using column 5, which is where we
store the 500 range status responses, or server errors. After that is the number of intervals to use in a analysis window
(15), followed by the number of analysis windows to compare (10). In this case, that means we’ll be examining the
last 15 seconds, and comparing what we find there with the 10 prior 15 second windows, or the 150 previous seconds.

The final argument is called pstat, which is a floating point value between 0 and 1. This tells us what type of data
changes we’re going to be looking for. Anything over a 0.5 means we’re looking for an increasing trend, anything
below 0.5 means we’re looking for a decreasing trend. We’ve set this to 0.8, which is clearly in the increasing trend
range.

So, taken together, this anomaly config means that we’re going to be watching the last 15 seconds to see whether there
is an anomalous spike in server errors, compared to the 10 intervals immediately prior. If we do detect a sizable spike
in server errors, we consider it an anomaly and an alert will be generated.

In this example, we’ve only specified anomaly detection on our HTTP response status monitoring, but the
anomaly_config option is also available to the stat graph filter, so we could apply similar monitoring to any of the
statsd data that is contained in our statmetric messages.

22 Chapter 2. hekad Command Line Options

https://github.com/mozilla-services/heka/blob/dev/sandbox/lua/filters/http_status.lua#L60

Heka Documentation, Release 0.7.3

2.2.12 Notifications

But what do we mean, exactly, when we say that detecting an anomaly will generate an alert? As with nearly everything
else in Heka, what we’re really saying is that a message will be injected into the message router, which other filter and
output plugins are then able to listen for and use as a trigger for action.

We won’t go into detail here, but along with the anomaly detection module Heka’s Lua environment provides an alert
module that generates alert messages (with throttling, to make sure hundreds of alerts in rapid succession don’t actually
generate hundreds of separate notifications) and an annotation module that causes the dashboard to apply annotations
to the graphs based on our circular buffer data. Both the http status and stat graph filters make use of both of these, so
if you specify anomaly configs for either of those filters, output graphs will be annotated and alert messages will be
generated when anomalies are detected.

Alert messages aren’t of much use if they’re just flowing through Heka’s message router and nothing is listening for
them, however. So let’s set up an SmtpOutput that will listen for the alert messages, sending emails when they come
through:

[alert_smtp_encoder]
type = "SandboxEncoder"
filename = "lua_encoders/alert.lua"

[SmtpOutput]
message_matcher = "Type == ’heka.sandbox-output’ && Fields[payload_type] == ’alert’"
encoder = "alert_smtp_encoder"
send_from = "heka@example.com"
send_to = ["alert_recipient@example.com"]
auth = "Plain"
user = "smtpuser"
password = "smtpassword"
host = "127.0.0.1:25"

First we specify an encoder, using a very simple encoder implementation provided by Heka which extracts the times-
tamp, hostname, logger, and payload from the message and emits those values in a text format. Then we add the
output itself, listening for any alert messages that are emitted by any of our SandboxFilter plugins, using the encoder
to format the message body, and sending an outgoing mail message through the SMTP server as specified by the other
configuration options.

And that’s it! We’re now generating email notifiers from our anomaly detection alerts.

2.2.13 Tying It All Together

Here’s what our full config looks like if we put it all together into a single file:

[hekad]
maxprocs = 2

[StatsdInput]

[StatAccumInput]
ticker_interval = 1
emit_in_fields = true

[CarbonOutput]
message_matcher = "Type == ’heka.statmetric’"
address = "mycarbonserver.example.com:2003"
protocol = "udp"

[statmetric-influx-encoder]

2.2. Getting Started 23

https://github.com/mozilla-services/heka/blob/dev/sandbox/lua/encoders/alert.lua

Heka Documentation, Release 0.7.3

type = "SandboxEncoder"
filename = "lua_encoders/statmetric_influx.lua"

[influx]
type = "HttpOutput"
message_matcher = "Type == ’heka.statmetric’"
address = "http://myinfluxserver.example.com:8086/db/stats/series"
encoder = "statmetric-influx-encoder"
username = "influx_username"
password = "influx_password"

[stat_graph]
type = "SandboxFilter"
filename = "lua_filters/stat_graph.lua"
ticker_interval = 1
preserve_data = true
message_matcher = "Type == ’heka.statmetric’"

[stat_graph.config]
num_rows = 300
secs_per_row = 1
stats = "stats.counters.000000.count stats.counters.000001.count stats.counters.000002.count"
stat_labels = "counter_0 counter_1 counter_2"
preservation_version = 0

[DashboardOutput]
ticker_interval = 1

[nginx_access_logs]
type = "LogstreamerInput"
parser_type = "token"
decoder = "nginx_access_decoder"
log_directory = "/var/log/nginx"
file_match = ’access\.log\.?(?P<Index>\d+)?(.gz)?’
priority = ["^Index"]

[nginx_access_decoder]
type = "SandboxDecoder"
script_type = "lua"
filename = "lua_decoders/nginx_access.lua"

[nginx_access_decoder.config]
log_format = ’$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent"’
type = "nginx.access"

[ESJsonEncoder]
es_index_from_timestamp = true
type_name = "%{Type}"

[ElasticSearchOutput]
message_matcher = "Type == ’nginx.access’"
encoder = "ESJsonEncoder"
flush_interval = 50

[http_status]
type = "SandboxFilter"
filename = "lua_filters/http_status.lua"
ticker_interval = 1

24 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

preserve_data = true
message_matcher = "Type == ’nginx.access’"

[http_status.config]
sec_per_row = 1
rows = 1440
perservation_version = 0
anomaly_config = ’roc("HTTP Status", 2, 15, 0, 1.5, true, false) mww_nonparametric("HTTP Status", 5, 15, 10, 0.8)’

[alert_smtp_encoder]
type = "SandboxEncoder"
filename = "lua_encoders/alert.lua"

[SmtpOutput]
message_matcher = "Type == ’heka.sandbox-output’ && Fields[payload_type] == ’alert’"
encoder = "alert_smtp_encoder"
send_from = "heka@example.com"
send_to = ["alert_recipient@example.com"]
auth = "Plain"
user = "smtpuser"
password = "smtpassword"
host = "127.0.0.1:25"

This isn’t too terribly long, but even so it might be nice to break it up into smaller pieces. Heka supports the use of a
directory instead of a single file for configuration; if you specify a directory all files ending with .toml will be merged
together and loaded as a single configuration, which is preferable for more complex deployments.

This example is not in any way meant to be an exhaustive list of Heka’s features. Indeed, we’ve only just barely
scratched the surface. Hopefully, though, it gives those of you who are new to Heka enough context to understand
how the pieces fit together, and it can be used as a starting point for developing configurations that will meet your own
needs. If you have questions or need assistance getting things going, please make use of the mailing list, or use an IRC
client to come visit in the #heka channel on irc.mozilla.org.

2.3 Configuring hekad

A hekad configuration file specifies what inputs, decoders, filters, encoders, and outputs will be loaded. The configu-
ration file is in TOML format. TOML looks very similar to INI configuration formats, but with slightly more rich data
structures and nesting support.

If hekad’s config file is specified to be a directory, all contained files with a filename ending in ”.toml” will be loaded
and merged into a single config. Files that don’t end with ”.toml” will be ignored. Merging will happen in alphabetical
order, settings specified later in the merge sequence will win conflicts.

The config file is broken into sections, with each section representing a single instance of a plugin. The section name
specifies the name of the plugin, and the “type” parameter specifies the plugin type; this must match one of the types
registered via the pipeline.RegisterPlugin function. For example, the following section describes a plugin named
“tcp:5565”, an instance of Heka’s plugin type “TcpInput”:

[tcp:5565]
type = "TcpInput"
parser_type = "message.proto"
decoder = "ProtobufDecoder"
address = ":5565"

If you choose a plugin name that also happens to be a plugin type name, then you can omit the “type” parameter from
the section and the specified name will be used as the type. Thus, the following section describes a plugin named
“TcpInput”, also of type “TcpInput”:

2.3. Configuring hekad 25

https://mail.mozilla.org/listinfo/heka
https://github.com/mojombo/toml

Heka Documentation, Release 0.7.3

[TcpInput]
address = ":5566"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

Note that it’s fine to have more than one instance of the same plugin type, as long as their configurations don’t interfere
with each other.

Any values other than “type” in a section, such as “address” in the above examples, will be passed through to the
plugin for internal configuration (see Plugin Configuration).

If a plugin fails to load during startup, hekad will exit at startup. When hekad is running, if a plugin should fail (due
to connection loss, inability to write a file, etc.) then hekad will either shut down or restart the plugin if the plugin
supports restarting. When a plugin is restarting, hekad will likely stop accepting messages until the plugin resumes
operation (this applies only to filters/output plugins).

Plugins specify that they support restarting by implementing the Restarting interface (see restarting_plugins). Plugins
supporting Restarting can have their restarting behavior configured.

An internal diagnostic runner runs every 30 seconds to sweep the packs used for messages so that possible bugs in
heka plugins can be reported and pinned down to a likely plugin(s) that failed to properly recycle the pack.

2.3.1 Global configuration options

You can optionally declare a [hekad] section in your configuration file to configure some global options for the heka
daemon.

Config:

• cpuprof (string output_file): Turn on CPU profiling of hekad; output is logged to the output_file.

• max_message_loops (uint): The maximum number of times a message can be re-injected into the system. This
is used to prevent infinite message loops from filter to filter; the default is 4.

• max_process_inject (uint): The maximum number of messages that a sandbox filter’s ProcessMessage func-
tion can inject in a single call; the default is 1.

• max_process_duration (uint64): The maximum number of nanoseconds that a sandbox filter’s ProcessMes-
sage function can consume in a single call before being terminated; the default is 100000.

• max_timer_inject (uint): The maximum number of messages that a sandbox filter’s TimerEvent function can
inject in a single call; the default is 10.

• max_pack_idle (string): A time duration string (e.x. “2s”, “2m”, “2h”) indicating how long a message pack
can be ‘idle’ before its considered leaked by heka. If too many packs leak from a bug in a filter or output
then heka will eventually halt. This setting indicates when that is considered to have occurred.

• maxprocs (int): Enable multi-core usage; the default is 1 core. More cores will generally increase message
throughput. Best performance is usually attained by setting this to 2 x (number of cores). This assumes
each core is hyper-threaded.

• memprof (string output_file): Enable memory profiling; output is logged to the output_file.

• poolsize (int): Specify the pool size of maximum messages that can exist; default is 100 which is usually
sufficient and of optimal performance.

• plugin_chansize (int): Specify the buffer size for the input channel for the various Heka plugins. Defaults to
50, which is usually sufficient and of optimal performance.

26 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

• base_dir (string): Base working directory Heka will use for persistent storage through process and server
restarts. The hekad process must have read and write access to this directory. Defaults to /var/cache/hekad
(or c:\var\cache\hekad on Windows).

• share_dir (string): Root path of Heka’s “share directory”, where Heka will expect to find certain resources
it needs to consume. The hekad process should have read- only access to this directory. Defaults to
/usr/share/heka (or c:\usr\share\heka on Windows).

New in version 0.6.

• sample_denominator (int): Specifies the denominator of the sample rate Heka will use when computing the
time required to perform certain operations, such as for the ProtobufDecoder to decode a message, or the
router to compare a message against a message matcher. Defaults to 1000, i.e. duration will be calculated
for one message out of 1000.

New in version 0.6.

• pid_file (string): Optionally specify the location of a pidfile where the process id of the running hekad process
will be written. The hekad process must have read and write access to the parent directory (which is not
automatically created). On a successful exit the pidfile will be removed. If the path already exists the
contained pid will be checked for a running process. If one is found, the current process will exit with an
error.

2.3.2 Example hekad.toml file

[hekad]
maxprocs = 4

Heka dashboard for internal metrics and time series graphs
[Dashboard]
type = "DashboardOutput"
address = ":4352"
ticker_interval = 15

Email alerting for anomaly detection
[Alert]
type = "SmtpOutput"
message_matcher = "Type == ’heka.sandbox-output’ && Fields[payload_type] == ’alert’"
send_from = "acme-alert@example.com"
send_to = ["admin@example.com"]
auth = "Plain"
user = "smtp-user"
password = "smtp-pass"
host = "mail.example.com:25"
encoder = "AlertEncoder"

User friendly formatting of alert messages
[AlertEncoder]
type = "SandboxEncoder"
filename = "lua_encoders/alert.lua"

Nginx access log reader
[AcmeWebserver]
type = "LogstreamerInput"
log_directory = "/var/log/nginx"
file_match = ’access\.log’
decoder = "CombinedNginxDecoder"

2.3. Configuring hekad 27

Heka Documentation, Release 0.7.3

Nginx access ’combined’ log parser
[CombinedNginxDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/nginx_access.lua"

[CombinedNginxDecoder.config]
user_agent_transform = true
user_agent_conditional = true
type = "combined"
log_format = ’$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent"’

Collection and visualization of the HTTP status codes
[AcmeHTTPStatus]
type = "SandboxFilter"
filename = "lua_filters/http_status.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Logger == ’AcmeWebserver’"

rate of change anomaly detection on column 1 (HTTP 200)
[AcmeHTTPStatus.config]
anomaly_config = ’roc("HTTP Status", 1, 15, 0, 1.5, true, false)’

2.3.3 Configuring Restarting Behavior

Plugins that support being restarted have a set of options that govern how the restart is handled. If preferred, the
plugin can be configured to not restart at which point hekad will exit, or it could be restarted only 100 times, or restart
attempts can proceed forever.

Adding the restarting configuration is done by adding a config section to the plugins’ config called retries. A small
amount of jitter will be added to the delay between restart attempts.

Config:

• max_jitter (string): The longest jitter duration to add to the delay between restarts. Jitter up to 500ms by
default is added to every delay to ensure more even restart attempts over time.

• max_delay (string): The longest delay between attempts to restart the plugin. Defaults to 30s (30 seconds).

• delay (string): The starting delay between restart attempts. This value will be the initial starting delay for the
exponential back-off, and capped to be no larger than the max_delay. Defaults to 250ms.

• max_retries (int): Maximum amount of times to attempt restarting the plugin before giving up and exiting the
plugin. Use 0 for no retry attempt, and -1 to continue trying forever (note that this will cause hekad to halt
possibly forever if the plugin cannot be restarted). Defaults to -1.

Example:

[AMQPOutput]
url = "amqp://guest:guest@rabbitmq/"
exchange = "testout"
exchange_type = "fanout"
message_matcher = ’Logger == "TestWebserver"’

[AMQPOutput.retries]
max_delay = "30s"
delay = "250ms"
max_retries = 5

28 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

2.4 Inputs

2.4.1 AMQPInput

Connects to a remote AMQP broker (RabbitMQ) and retrieves messages from the specified queue. As AMQP is
dynamically programmable, the broker topology needs to be specified in the plugin configuration.

Config:

• url (string): An AMQP connection string formatted per the RabbitMQ URI Spec.

• exchange (string): AMQP exchange name

• exchange_type (string): AMQP exchange type (fanout, direct, topic, or headers).

• exchange_durability (bool): Whether the exchange should be configured as a durable exchange. Defaults to
non-durable.

• exchange_auto_delete (bool): Whether the exchange is deleted when all queues have finished and there is no
publishing. Defaults to auto-delete.

• routing_key (string): The message routing key used to bind the queue to the exchange. Defaults to empty
string.

• prefetch_count (int): How many messages to fetch at once before message acks are sent. See RabbitMQ
performance measurements for help in tuning this number. Defaults to 2.

• queue (string): Name of the queue to consume from, an empty string will have the broker generate a name for
the queue. Defaults to empty string.

• queue_durability (bool): Whether the queue is durable or not. Defaults to non-durable.

• queue_exclusive (bool): Whether the queue is exclusive (only one consumer allowed) or not. Defaults to non-
exclusive.

• queue_auto_delete (bool): Whether the queue is deleted when the last consumer un-subscribes. Defaults to
auto-delete.

• queue_ttl (int): Allows ability to specify TTL in milliseconds on Queue declaration for expiring messages.
Defaults to undefined/infinite.

• decoder (string): Decoder name used to transform a raw message body into a structured hekad message. Must
be a decoder appropriate for the messages that come in from the exchange. If accepting messages that
have been generated by an AMQPOutput in another Heka process then this should be a ProtobufDecoder
instance.

• retries (RetryOptions, optional): A sub-section that specifies the settings to be used for restart behavior. See
configuring_restarting

New in version 0.6.

• tls (TlsConfig): An optional sub-section that specifies the settings to be used for any SSL/TLS encryption. This
will only have any impact if URL uses the AMQPS URI scheme. See Configuring TLS.

Since many of these parameters have sane defaults, a minimal configuration to consume serialized messages would
look like:

[AMQPInput]
url = "amqp://guest:guest@rabbitmq/"
exchange = "testout"
exchange_type = "fanout"

2.4. Inputs 29

http://www.rabbitmq.com/uri-spec.html
http://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/
http://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/

Heka Documentation, Release 0.7.3

Or you might use a PayloadRegexDecoder to parse OSX syslog messages with the following:

[AMQPInput]
url = "amqp://guest:guest@rabbitmq/"
exchange = "testout"
exchange_type = "fanout"
decoder = "logparser"

[logparser]
type = "MultiDecoder"
subs = ["logline", "leftovers"]

[logline]
type = "PayloadRegexDecoder"
MatchRegex = ’\w+ \d+ \d+:\d+:\d+ \S+ (?P<Reporter>[^\[]+)\[(?P<Pid>\d+)](?P<Sandbox>[^:]+)?: (?P Remaining>.*)’

[logline.MessageFields]
Type = "amqplogline"
Hostname = "myhost"
Reporter = "%Reporter%"
Remaining = "%Remaining%"
Logger = "%Logger%"
Payload = "%Remaining%"

[leftovers]
type = "PayloadRegexDecoder"
MatchRegex = ’.*’

[leftovers.MessageFields]
Type = "drop"
Payload = ""

2.4.2 FilePollingInput

New in version 0.7.

FilePollingInputs periodically read (unbuffered) the contents of a file specified, and creates a Heka message with the
contents of the file as the payload.

Config:

• file_path(string): The absolute path to the file which the input should read.

• ticker_interval (unit): How often, in seconds to input should read the contents of the file.

• decoder (string): The name of the decoder used to process the payload of the input.

Example:

[MemStats]
type = "FilePollingInput"
ticker_interval = 1
file_path = "/proc/meminfo"
decoder = "MemStatsDecoder"

30 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

2.4.3 HttpInput

HttpInput plugins intermittently poll remote HTTP URLs for data and populate message objects based on the results
of the HTTP interactions. Messages will be populated as follows:

• Uuid: Type 4 (random) UUID generated by Heka.

• Timestamp: Time HTTP request is completed.

• Type: heka.httpinput.data or heka.httpinput.error depending on whether or not the request completed.
(Note that a response returned with an HTTP error code is still considered complete and will generate
type heka.httpinput.data.)

• Hostname: Hostname of the machine on which Heka is running.

• Payload: Entire contents of the HTTP response body.

• Severity: HTTP response 200 uses success_severity config value, all other results use error_severity config
value.

• Logger: Fetched URL.

• Fields[”Status”] (string): HTTP status string value (e.g. “200 OK”).

• Fields[”StatusCode”] (int): HTTP status code integer value.

• Fields[”ResponseSize”] (int): Value of HTTP Content-Length header.

• Fields[”ResponseTime”] (float64): Clock time elapsed for HTTP request, in seconds.

• Fields[”Protocol”] (string): HTTP protocol used for the request (e.g. “HTTP/1.0”)

The Fields values above will only be populated in the event of a completed HTTP request. Also, it is possible to
specify a decoder to further process the results of the HTTP response before injecting the message into the router.

Config:

• url (string): A HTTP URL which this plugin will regularly poll for data. This option cannot be used with the
urls option. No default URL is specified.

• urls (array): New in version 0.5.

An array of HTTP URLs which this plugin will regularly poll for data. This option cannot be used with
the url option. No default URLs are specified.

• method (string): New in version 0.5.

The HTTP method to use for the request. Defaults to “GET”.

• headers (subsection): New in version 0.5.

Subsection defining headers for the request. By default the User-Agent header is set to “Heka”

• body (string): New in version 0.5.

The request body (e.g. for an HTTP POST request). No default body is specified.

• username (string): New in version 0.5.

The username for HTTP Basic Authentication. No default username is specified.

• password (string): New in version 0.5.

The password for HTTP Basic Authentication. No default password is specified.

• ticker_interval (uint): Time interval (in seconds) between attempts to poll for new data. Defaults to 10.

2.4. Inputs 31

Heka Documentation, Release 0.7.3

• success_severity (uint): New in version 0.5.

Severity level of successful HTTP request. Defaults to 6 (information).

• error_severity (uint): New in version 0.5.

Severity level of errors, unreachable connections, and non-200 responses of successful HTTP requests.
Defaults to 1 (alert).

• decoder (string): The name of the decoder used to further transform the response body text into a structured
hekad message. No default decoder is specified.

Example:

[HttpInput]
url = "http://localhost:9876/"
ticker_interval = 5
success_severity = 6
error_severity = 1
decoder = "MyCustomJsonDecoder"

[HttpInput.headers]
user-agent = "MyCustomUserAgent"

2.4.4 HttpListenInput

New in version 0.5.

HttpListenInput plugins start a webserver listening on the specified address and port. If no decoder is specified data in
the request body will be populated as the message payload. Messages will be populated as follows:

• Uuid: Type 4 (random) UUID generated by Heka.

• Timestamp: Time HTTP request is handled.

• Type: heka.httpdata.request

• Hostname: The remote network address of requester.

• Payload: Entire contents of the HTTP response body.

• Severity: 6

• Logger: HttpListenInput

• Fields[”UserAgent”] (string): Request User-Agent header (e.g. “GitHub Hookshot dd0772a”).

• Fields[”ContentType”] (string): Request Content-Type header (e.g. “application/x-www-form-urlencoded”).

• Fields[”Protocol”] (string): HTTP protocol used for the request (e.g. “HTTP/1.0”)

Config:

• address (string): An IP address:port on which this plugin will expose a HTTP server. Defaults to
“127.0.0.1:8325”.

• decoder (string): The name of the decoder used to further transform the request body text into a structured
hekad message. No default decoder is specified.

New in version 0.7.

• headers (subsection, optional): It is possible to inject arbitrary HTTP headers into each outgoing response
by adding a TOML subsection entitled “headers” to you HttpOutput config section. All entries in the
subsection must be a list of string values.

32 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

Example:

[HttpListenInput]
address = "0.0.0.0:8325"

2.4.5 Logstreamer Input

New in version 0.5.

Tails a single log file, a sequential single log source, or multiple log sources of either a single logstream or multiple
logstreams.

See also:

Complete documentation with examples

Config:

• hostname (string): The hostname to use for the messages, by default this will be the machine’s qualified host-
name. This can be set explicitly to ensure it’s the correct name in the event the machine has multiple
interfaces/hostnames.

• oldest_duration (string): A time duration string (e.x. “2s”, “2m”, “2h”). Logfiles with a last modified time
older than oldest_duration ago will not be included for parsing.

• journal_directory (string): The directory to store the journal files in for tracking the location that has been
read to thus far. By default this is stored under heka’s base directory.

• log_directory (string): The root directory to scan files from. This scan is recursive so it should be suitably
restricted to the most specific directory this selection of logfiles will be matched under. The log_directory
path will be prepended to the file_match.

• rescan_interval (int): During logfile rotation, or if the logfile is not originally present on the system, this
interval is how often the existence of the logfile will be checked for. The default of 5 seconds is usually
fine. This interval is in milliseconds.

• file_match (string): Regular expression used to match files located under the log_directory. This regular
expression has $ added to the end automatically if not already present, and log_directory as the
prefix. WARNING: file_match should typically be delimited with single quotes, indicating use of a raw
string, rather than double quotes, which require all backslashes to be escaped. For example, ‘access\.log’
will work as expected, but “access\.log” will not, you would need “access\\.log” to achieve the same
result.

• priority (list of strings): When using sequential logstreams, the priority is how to sort the logfiles in order
from oldest to newest.

• differentiator (list of strings): When using multiple logstreams, the differentiator is a set of strings that will
be used in the naming of the logger, and portions that match a captured group from the file_match will
have their matched value substituted in.

• translation (hash map of hash maps of ints): A set of translation mappings for matched groupings to the ints
to use for sorting purposes.

• decoder (string): A ProtobufDecoder instance must be specified for the message.proto parser. Use of a decoder
is optional for token and regexp parsers; if no decoder is specified the parsed data is available in the Heka
message payload.

• parser_type (string):

– token - splits the log on a byte delimiter (default).

– regexp - splits the log on a regexp delimiter.

2.4. Inputs 33

Heka Documentation, Release 0.7.3

– message.proto - splits the log on protobuf message boundaries

• delimiter (string): Only used for token or regexp parsers. Character or regexp delimiter used by the parser
(default “\n”). For the regexp delimiter a single capture group can be specified to preserve the delimiter
(or part of the delimiter). The capture will be added to the start or end of the log line depending on the
delimiter_location configuration. Note: when a start delimiter is used the last line in the file will not be
processed (since the next record defines its end) until the log is rolled.

• delimiter_location (string): Only used for regexp parsers.

– start - the regexp delimiter occurs at the start of a log line.

– end - the regexp delimiter occurs at the end of the log line (default).

2.4.6 ProcessInput

Executes one or more external programs on an interval, creating messages from the output. Supports a chain of
commands, where stdout from each process will be piped into the stdin for the next process in the chain. In the event
the program returns a non-zero exit code, ProcessInput will log that an error occurred.

Config:

• command (map[uint]cmd_config): The command is a structure that contains the full path to the binary, com-
mand line arguments, optional enviroment variables and an optional working directory (see below). Pro-
cessInput expects the commands to be indexed by integers starting with 0, where 0 is the first process in
the chain.

• ticker_interval (uint): The number of seconds to wait between each run of command. Defaults to 15. A
ticker_interval of 0 indicates that the command is run only once, and should only be used for long running
processes that do not exit. If ticker_interval is set to 0 and the process exits, then the ProcessInput will
exit, invoking the restart behavior (see configuring_restarting).

• stdout (bool): If true, for each run of the process chain a message will be generated with the last command in
the chain’s stdout as the payload. Defaults to true.

• stderr (bool): If true, for each run of the process chain a message will be generated with the last command in
the chain’s stderr as the payload. Defaults to false.

• decoder (string): Name of the decoder instance to send messages to. If omitted messages will be injected
directly into Heka’s message router.

• parser_type (string):

– token - splits the log on a byte delimiter (default).

– regexp - splits the log on a regexp delimiter.

• delimiter (string): Only used for token or regexp parsers. Character or regexp delimiter used by the parser
(default “\n”). For the regexp delimiter a single capture group can be specified to preserve the delimiter
(or part of the delimiter). The capture will be added to the start or end of the log line depending on the
delimiter_location configuration. Note: when a start delimiter is used the last line in the file will not be
processed (since the next record defines its end) until the log is rolled.

• delimiter_location (string): Only used for regexp parsers.

– start - the regexp delimiter occurs at the start of a log line.

– end - the regexp delimiter occurs at the end of the log line (default).

• timeout (uint): Timeout in seconds before any one of the commands in the chain is terminated.

• trim (bool) : Trim a single trailing newline character if one exists. Default is true.

34 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

• retries (RetryOptions, optional): A sub-section that specifies the settings to be used for restart behavior. See
configuring_restarting

cmd_config structure:

• bin (string): The full path to the binary that will be executed.

• args ([]string): Command line arguments to pass into the executable.

• env ([]string): Used to set environment variables before command is run. Default is nil, which uses the heka
process’s environment.

• directory (string): Used to set the working directory of Bin Default is “”, which uses the heka process’s work-
ing directory.

Example:

[DemoProcessInput]
type = "ProcessInput"
ticker_interval = 2
parser_type = "token"
delimiter = " "
stdout = true
stderr = false
trim = true

[DemoProcessInput.command.0]
bin = "/bin/cat"
args = ["../testsupport/process_input_pipes_test.txt"]

[DemoProcessInput.command.1]
bin = "/usr/bin/grep"
args = ["ignore"]

2.4.7 ProcessDirectoryInput

New in version 0.5.

The ProcessDirectoryInput periodically scans a filesystem directory looking for ProcessInput configuration files. The
ProcessDirectoryInput will maintain a pool of running ProcessInputs based on the contents of this directory, refreshing
the set of running inputs as needed with every rescan. This allows Heka administrators to manage a set of data
collection processes for a running hekad server without restarting the server.

Each ProcessDirectoryInput has a process_dir configuration setting, which is the root folder of the tree where sched-
uled jobs are defined. It should contain exactly one nested level of subfolders, named with ASCII numeric characters
indicating the interval, in seconds, between each process run. These numeric folders must contain TOML files which
specify the details regarding which processes to run.

For example, a process_dir might look like this:

-/usr/share/heka/processes/
|-5
|- check_myserver_running.toml

|-61
|- cat_proc_mounts.toml
|- get_running_processes.toml

|-302
|- some_custom_query.toml

2.4. Inputs 35

Heka Documentation, Release 0.7.3

This indicates one process to be run every five seconds, two processes to be run every 61 seconds, and one process to
be run every 302 seconds.

Note that ProcessDirectory will ignore any files that are not nested one level deep, are not in a folder named for an
integer 0 or greater, and do not end with ‘.toml’. Each file which meets these criteria, such as those shown in the
example above, should contain the TOML configuration for exactly one ProcessInput, matching that of a standalone
ProcessInput with the following restrictions:

• The section name must be ProcessInput. Any TOML sections named anything other than ProcessInput will be
ignored.

• Any specified ticker_interval value will be ignored. The ticker interval value to use will be parsed from the
directory path.

If the specified process fails to run or the ProcessInput config fails for any other reason, ProcessDirectoryInput will
log an error message and continue.

Config:

• ticker_interval (int, optional): Amount of time, in seconds, between scans of the process_dir. Defaults to 300
(i.e. 5 minutes).

• process_dir (string, optional): This is the root folder of the tree where the scheduled jobs are defined. Abso-
lute paths will be honored, relative paths will be computed relative to Heka’s globally specified share_dir.
Defaults to “processes” (i.e. “$share_dir/processes”).

• retries (RetryOptions, optional): A sub-section that specifies the settings to be used for restart behavior. See
configuring_restarting

Example:

[ProcessDirectoryInput]
process_dir = "/etc/hekad/processes.d"
ticker_interval = 120

2.4.8 StatAccumInput

Provides an implementation of the StatAccumulator interface which other plugins can use to submit Stat objects for
aggregation and roll-up. Accumulates these stats and then periodically emits a “stat metric” type message containing
aggregated information about the stats received since the last generated message.

Config:

• emit_in_payload (bool): Specifies whether or not the aggregated stat information should be emitted in the
payload of the generated messages, in the format accepted by the carbon portion of the graphite graphing
software. Defaults to true.

• emit_in_fields (bool): Specifies whether or not the aggregated stat information should be emitted in the mes-
sage fields of the generated messages. Defaults to false. NOTE: At least one of ‘emit_in_payload’ or
‘emit_in_fields’ must be true or it will be considered a configuration error and the input won’t start.

• percent_threshold (int): Percent threshold to use for computing “upper_N%” type stat values. Defaults to 90.

• ticker_interval (uint): Time interval (in seconds) between generated output messages. Defaults to 10.

• message_type (string): String value to use for the Type value of the emitted stat messages. Defaults to
“heka.statmetric”.

• legacy_namespaces (bool): If set to true, then use the older format for namespacing counter stats, with rates
recorded under stats.<counter_name> and absolute count recorded under stats_counts.<counter_name>.
See statsd metric namespacing. Defaults to false.

36 Chapter 2. hekad Command Line Options

http://graphite.wikidot.com/carbon
http://graphite.wikidot.com/
https://github.com/etsy/statsd/blob/master/docs/namespacing.md

Heka Documentation, Release 0.7.3

• global_prefix (string): Global prefix to use for sending stats to graphite. Defaults to “stats”.

• counter_prefix (string): Secondary prefix to use for namespacing counter metrics. Has no impact unless
legacy_namespaces is set to false. Defaults to “counters”.

• timer_prefix (string): Secondary prefix to use for namespacing timer metrics. Defaults to “timers”.

• gauge_prefix (string): Secondary prefix to use for namespacing gauge metrics. Defaults to “gauges”.

• statsd_prefix (string): Prefix to use for the statsd numStats metric. Defaults to “statsd”.

• delete_idle_stats (bool): Don’t emit values for inactive stats instead of sending 0 or in the case of gauges,
sending the previous value. Defaults to false.

2.4.9 StatsdInput

Listens for statsd protocol counter, timer, or gauge messages on a UDP port, and generates Stat objects that are handed
to a StatAccumulator for aggregation and processing.

Config:

• address (string): An IP address:port on which this plugin will expose a statsd server. Defaults to
“127.0.0.1:8125”.

• stat_accum_name (string): Name of a StatAccumInput instance that this StatsdInput will use as its StatAccu-
mulator for submitting received stat values. Defaults to “StatAccumInput”.

Example:

[StatsdInput]
address = ":8125"
stat_accum_name = "custom_stat_accumulator"

2.4.10 TcpInput

Listens on a specific TCP address and port for messages. If the message is signed it is verified against the signer name
and specified key version. If the signature is not valid the message is discarded otherwise the signer name is added to
the pipeline pack and can be use to accept messages using the message_signer configuration option.

Config:

• address (string): An IP address:port on which this plugin will listen.

• signer: Optional TOML subsection. Section name consists of a signer name, underscore, and numeric version
of the key.

– hmac_key (string): The hash key used to sign the message.

New in version 0.4.

• decoder (string): A ProtobufDecoder instance must be specified for the message.proto parser. Use of a decoder
is optional for token and regexp parsers; if no decoder is specified the raw input data is available in the
Heka message payload.

• parser_type (string):

– token - splits the stream on a byte delimiter.

– regexp - splits the stream on a regexp delimiter.

– message.proto - splits the stream on protobuf message boundaries.

2.4. Inputs 37

https://github.com/b/statsd_spec

Heka Documentation, Release 0.7.3

• delimiter (string): Only used for token or regexp parsers. Character or regexp delimiter used by the parser
(default “\n”). For the regexp delimiter a single capture group can be specified to preserve the delimiter
(or part of the delimiter). The capture will be added to the start or end of the message depending on the
delimiter_location configuration.

• delimiter_location (string): Only used for regexp parsers.

– start - the regexp delimiter occurs at the start of the message.

– end - the regexp delimiter occurs at the end of the message (default).

New in version 0.5.

• use_tls (bool): Specifies whether or not SSL/TLS encryption should be used for the TCP connections. Defaults
to false.

• tls (TlsConfig): A sub-section that specifies the settings to be used for any SSL/TLS encryption. This will only
have any impact if use_tls is set to true. See Configuring TLS.

• net (string, optional, default: “tcp”) Network value must be one of: “tcp”, “tcp4”, “tcp6”, “unix” or “unix-
packet”.

New in version 0.6.

• keep_alive (bool): Specifies whether or not TCP keepalive should be used for established TCP connections.
Defaults to false.

• keep_alive_period (int): Time duration in seconds that a TCP connection will be maintained before keepalive
probes start being sent. Defaults to 7200 (i.e. 2 hours).

Example:

[TcpInput]
address = ":5565"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

[TcpInput.signer.ops_0]
hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
[TcpInput.signer.ops_1]
hmac_key = "xdd908lfcgikauexdi8elogusridaxoalf"

[TcpInput.signer.dev_1]
hmac_key = "haeoufyaiofeugdsnzaogpi.ua,dp.804u"

2.4.11 UdpInput

Listens on a specific UDP address and port for messages. If the message is signed it is verified against the signer name
and specified key version. If the signature is not valid the message is discarded otherwise the signer name is added to
the pipeline pack and can be use to accept messages using the message_signer configuration option.

Note: The UDP payload is not restricted to a single message; since the stream parser is being used multiple messages
can be sent in a single payload.

Config:

• address (string): An IP address:port or Unix datagram socket file path on which this plugin will listen.

• signer: Optional TOML subsection. Section name consists of a signer name, underscore, and numeric version
of the key.

38 Chapter 2. hekad Command Line Options

http://en.wikipedia.org/wiki/Keepalive#TCP_keepalive

Heka Documentation, Release 0.7.3

– hmac_key (string): The hash key used to sign the message.

New in version 0.4.

• decoder (string): A ProtobufDecoder instance must be specified for the message.proto parser. Use of a decoder
is optional for token and regexp parsers; if no decoder is specified the raw input data is available in the
Heka message payload.

• parser_type (string):

– token - splits the stream on a byte delimiter.

– regexp - splits the stream on a regexp delimiter.

– message.proto - splits the stream on protobuf message boundaries.

• delimiter (string): Only used for token or regexp parsers. Character or regexp delimiter used by the parser
(default “\n”). For the regexp delimiter a single capture group can be specified to preserve the delimiter
(or part of the delimiter). The capture will be added to the start or end of the message depending on the
delimiter_location configuration.

• delimiter_location (string): Only used for regexp parsers.

– start - the regexp delimiter occurs at the start of the message.

– end - the regexp delimiter occurs at the end of the message (default).

New in version 0.5.

• net (string, optional, default: “udp”) Network value must be one of: “udp”, “udp4”, “udp6”, or “unixgram”.

Example:

[UdpInput]
address = "127.0.0.1:4880"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

[UdpInput.signer.ops_0]
hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
[UdpInput.signer.ops_1]
hmac_key = "xdd908lfcgikauexdi8elogusridaxoalf"

[UdpInput.signer.dev_1]
hmac_key = "haeoufyaiofeugdsnzaogpi.ua,dp.804u"

2.5 Decoders

2.5.1 Apache Access Log Decoder

New in version 0.6.

Parses the Apache access logs based on the Apache ‘LogFormat’ configuration directive. The Apache format specifiers
are mapped onto the Nginx variable names where applicable e.g. %a -> remote_addr. This allows generic web filters
and outputs to work with any HTTP server input.

Config:

• log_format (string) The ‘LogFormat’ configuration directive from the apache2.conf. %t variables are con-
verted to the number of nanosecond since the Unix epoch and used to set the Timestamp on the message.
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html

2.5. Decoders 39

http://httpd.apache.org/docs/2.4/mod/mod_log_config.html

Heka Documentation, Release 0.7.3

• type (string, optional, default nil): Sets the message ‘Type’ header to the specified value

• user_agent_transform (bool, optional, default false) Transform the http_user_agent into
user_agent_browser, user_agent_version, user_agent_os.

• user_agent_keep (bool, optional, default false) Always preserve the http_user_agent value if transform is en-
abled.

• user_agent_conditional (bool, optional, default false) Only preserve the http_user_agent value if transform
is enabled and fails.

• payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[TestWebserver]
type = "LogstreamerInput"
log_directory = "/var/log/apache"
file_match = ’access\.log’
decoder = "CombinedLogDecoder"

[CombinedLogDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/apache_access.lua"

[CombinedLogDecoder.config]
type = "combined"
user_agent_transform = true
combined log format
log_format = ’%h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"’

common log format
log_format = ’%h %l %u %t \"%r\" %>s %O’

vhost_combined log format
log_format = ’%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"’

referer log format
log_format = ’%{Referer}i -> %U’

Example Heka Message

Timestamp 2014-01-10 07:04:56 -0800 PST

Type combined

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5

Logger TestWebserver

Payload

EnvVersion

Severity 7

Fields

name:”remote_user” value_string:”-“
name:”http_x_forwarded_for” value_string:”-“

40 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

name:”http_referer” value_string:”-“
name:”body_bytes_sent” value_type:DOUBLE representation:”B” value_double:82
name:”remote_addr” value_string:”62.195.113.219” representation:”ipv4”
name:”status” value_type:DOUBLE value_double:200
name:”request” value_string:”GET /v1/recovery_email/status HTTP/1.1”
name:”user_agent_os” value_string:”FirefoxOS”
name:”user_agent_browser” value_string:”Firefox”
name:”user_agent_version” value_type:DOUBLE value_double:29

New in version 0.6.

2.5.2 GeoIpDecoder

Decoder plugin that generates GeoIP data based on the IP address of a specified field. It uses the Go project:
https://github.com/abh/geoip as a wrapper around MaxMind’s geoip-api-c library. This decoder assumes you have
downloaded and installed the geoip-api-c library from MaxMind’s website. Currently, only the GeoLiteCity database
is supported, which you must also download and install yourself into a location to be referenced by the db_file config
option. By default the database file is opened using “GEOIP_MEMORY_CACHE” mode. This setting is hard-coded
into the wrapper’s geoip.go file. You will need to manually override that code if you want to specify one of the other
modes listed here:

Note: If you are using this with the ES output you will likely need to specify the raw_bytes_field option for the
target_field specified. This is required to preserve the formatting of the JSON object.

Config:

• db_file: The location of the GeoLiteCity.dat database. Defaults to “/var/cache/hekad/GeoLiteCity.dat”

• source_ip_field: The name of the field containing the IP address you want to derive the location for.

• target_field: The name of the new field created by the decoder. The decoder will output a JSON object with
the following elements:

– latitute: string,

– longitude: string,

– location: [float64, float64],

* GeoJSON format intended for use as a geo_point for ES output. Useful when using Kibana’s
Bettermap panel

– coordinates: [string, string],

– countrycode: string,

– countrycode3: string,

– region: string,

– city: string,

– postalcode: string,

– areacode: int,

– charset: int,

– continentalcode: string

2.5. Decoders 41

https://github.com/abh/geoip
https://github.com/maxmind/geoip-api-c/releases/
https://github.com/maxmind/geoip-api-c/blob/master/README.md#memory-caching-and-other-options/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-geo-point-type.html/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-geo-point-type.htmlhttp://www.elasticsearch.org/guide/en/kibana/current/_bettermap.html/

Heka Documentation, Release 0.7.3

[apache_geoip_decoder]
type = "GeoIpDecoder"
db_file="/etc/geoip/GeoLiteCity.dat"
source_ip_field="remote_host"
target_field="geoip"

2.5.3 MultiDecoder

This decoder plugin allows you to specify an ordered list of delegate decoders. The MultiDecoder will pass the
PipelinePack to be decoded to each of the delegate decoders in turn until decode succeeds. In the case of failure to
decode, MultiDecoder will return an error and recycle the message.

Config:

• subs ([]string): An ordered list of subdecoders to which the MultiDecoder will delegate. Each item in the list
should specify another decoder configuration section by section name. Must contain at least one entry.

• log_sub_errors (bool): If true, the DecoderRunner will log the errors returned whenever a delegate decoder
fails to decode a message. Defaults to false.

• cascade_strategy (string): Specifies behavior the MultiDecoder should exhibit with regard to cascading
through the listed decoders. Supports only two valid values: “first-wins” and “all”. With “first-wins”, each
decoder will be tried in turn until there is a successful decoding, after which decoding will be stopped.
With “all”, all listed decoders will be applied whether or not they succeed. In each case, decoding will
only be considered to have failed if none of the sub-decoders succeed.

Here is a slightly contrived example where we have protocol buffer encoded messages coming in over a TCP con-
nection, with each message containin a single nginx log line. Our MultiDecoder will run each message through two
decoders, the first to deserialize the protocol buffer and the second to parse the log text:

[TcpInput]
address = ":5565"
parser_type = "message.proto"
decoder = "shipped-nginx-decoder"

[shipped-nginx-decoder]
type = "MultiDecoder"
subs = [’ProtobufDecoder’, ’nginx-access-decoder’]
cascade_strategy = "all"
log_sub_errors = true

[ProtobufDecoder]

[nginx-access-decoder]
type = "SandboxDecoder"
filename = "lua_decoders/nginx_access.lua"

[nginx-access-decoder.config]
type = "combined"
user_agent_transform = true
log_format = ’$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent"’

2.5.4 Linux Cpu Stats Decoder

New in version 0.7.

Parses a payload containing the contents of a /proc/loadavg file into a Heka message.

42 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

Config:

• payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[CpuStats]
type = "FilePollingInput"
ticker_interval = 1
file_path = "/proc/loadavg"
decoder = "CpuStatsDecoder"

[CpuStatsDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/cpustats.lua"

Example Heka Message

Timestamp 2014-01-10 07:04:56 -0800 PST

Type stats.cpustats

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5

Payload

EnvVersion

Severity 7

Fields

name:”1MinAvg” value_type:DOUBLE value_double:”3.05”
name:”5MinAvg” value_type:DOUBLE value_double:”1.21”
name:”15MinAvg” value_type:DOUBLE value_double:”0.44”
name:”NumProcesses” value_type:DOUBLE value_double:”11”
name:”FilePath” value_string:”/proc/loadavg”

2.5.5 Linux Disk Stats Decoder

New in version 0.7.

Parses a payload containing the contents of a /sys/block/$DISK/stat file (where $DISK is a disk identifier such as sda)
into a Heka message struct. This also tries to obtain the TickerInterval of the input it recieved the data from, by
extracting it from a message field named TickerInterval.

Config:

• payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[DiskStats]
type = "FilePollingInput"
ticker_interval = 1
file_path = "/sys/block/sda1/stat"
decoder = "DiskStatsDecoder"

2.5. Decoders 43

Heka Documentation, Release 0.7.3

[DiskStatsDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/diskstats.lua"

Example Heka Message

Timestamp 2014-01-10 07:04:56 -0800 PST

Type stats.diskstats

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5

Payload

EnvVersion

Severity 7

Fields

name:”ReadsCompleted” value_type:DOUBLE value_double:”20123”
name:”ReadsMerged” value_type:DOUBLE value_double:”11267”
name:”SectorsRead” value_type:DOUBLE value_double:”1.094968e+06”
name:”TimeReading” value_type:DOUBLE value_double:”45148”
name:”WritesCompleted” value_type:DOUBLE value_double:”1278”
name:”WritesMerged” value_type:DOUBLE value_double:”1278”
name:”SectorsWritten” value_type:DOUBLE value_double:”206504”
name:”TimeWriting” value_type:DOUBLE value_double:”3348”
name:”TimeDoingIO” value_type:DOUBLE value_double:”4876”
name:”WeightedTimeDoingIO” value_type:DOUBLE value_double:”48356”
name:”NumIOInProgress” value_type:DOUBLE value_double:”3”
name:”TickerInterval” value_type:DOUBLE value_double:”2”
name:”FilePath” value_string:”/sys/block/sda/stat”

2.5.6 Nginx Access Log Decoder

New in version 0.5.

Parses the Nginx access logs based on the Nginx ‘log_format’ configuration directive.

Config:

• log_format (string) The ‘log_format’ configuration directive from the nginx.conf. $time_local or
$time_iso8601 variable is converted to the number of nanosecond since the Unix epoch and used to set the
Timestamp on the message. http://nginx.org/en/docs/http/ngx_http_log_module.html

• type (string, optional, default nil): Sets the message ‘Type’ header to the specified value

• user_agent_transform (bool, optional, default false) Transform the http_user_agent into
user_agent_browser, user_agent_version, user_agent_os.

• user_agent_keep (bool, optional, default false) Always preserve the http_user_agent value if transform is en-
abled.

• user_agent_conditional (bool, optional, default false) Only preserve the http_user_agent value if transform
is enabled and fails.

44 Chapter 2. hekad Command Line Options

http://nginx.org/en/docs/http/ngx_http_log_module.html

Heka Documentation, Release 0.7.3

• payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[TestWebserver]
type = "LogstreamerInput"
log_directory = "/var/log/nginx"
file_match = ’access\.log’
decoder = "CombinedLogDecoder"

[CombinedLogDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/nginx_access.lua"

[CombinedLogDecoder.config]
type = "combined"
user_agent_transform = true
combined log format
log_format = ’$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent"’

Example Heka Message

Timestamp 2014-01-10 07:04:56 -0800 PST

Type combined

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5

Logger TestWebserver

Payload

EnvVersion

Severity 7

Fields

name:”remote_user” value_string:”-“
name:”http_x_forwarded_for” value_string:”-“
name:”http_referer” value_string:”-“
name:”body_bytes_sent” value_type:DOUBLE representation:”B” value_double:82
name:”remote_addr” value_string:”62.195.113.219” representation:”ipv4”
name:”status” value_type:DOUBLE value_double:200
name:”request” value_string:”GET /v1/recovery_email/status HTTP/1.1”
name:”user_agent_os” value_string:”FirefoxOS”
name:”user_agent_browser” value_string:”Firefox”
name:”user_agent_version” value_type:DOUBLE value_double:29

2.5.7 Linux Memory Stats Decoder

New in version 0.7.

Parses a payload containing the contents of a /proc/meminfo file into a Heka message.

Config:

2.5. Decoders 45

Heka Documentation, Release 0.7.3

• payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[MemStats]
type = "FilePollingInput"
ticker_interval = 1
file_path = "/proc/meminfo"
decoder = "MemStatsDecoder"

[MemStatsDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/memstats.lua"

Example Heka Message

Timestamp 2014-01-10 07:04:56 -0800 PST

Type stats.memstats

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5

Payload

EnvVersion

Severity 7

Fields

name:”MemTotal” value_type:DOUBLE representation:”kB” value_double:”4047616”
name:”MemFree” value_type:DOUBLE representation:”kB” value_double:”3432216”
name:”Buffers” value_type:DOUBLE representation:”kB” value_double:”82028”
name:”Cached” value_type:DOUBLE representation:”kB” value_double:”368636”
name:”FilePath” value_string:”/proc/meminfo”

The total available fields can be found in man procfs. All fields are of type double, and the representation is in kB
(except for the HugePages fields). Here is a full list of fields available:

MemTotal, MemFree, Buffers, Cached, SwapCached, Active, Inactive, Active(anon), Inactive(anon), Active(file),
Inactive(file), Unevictable, Mlocked, SwapTotal, SwapFree, Dirty, Writeback, AnonPages, Mapped, Shmem, Slab,
SReclaimable, SUnreclaim, KernelStack, PageTables, NFS_Unstable, Bounce, WritebackTmp, CommitLimit, Com-
mitted_AS, VmallocTotal, VmallocUsed, VmallocChunk, HardwareCorrupted, AnonHugePages, HugePages_Total,
HugePages_Free, HugePages_Rsvd, HugePages_Surp, Hugepagesize, DirectMap4k, DirectMap2M, DirectMap1G.

Note that your available fields may have a slight variance depending on the system’s kernel version.

2.5.8 MySQL Slow Query Log Decoder

New in version 0.6.

Parses and transforms the MySQL slow query logs. Use mariadb_slow_query.lua to parse the MariaDB variant of the
MySQL slow query logs.

Config:

46 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

• truncate_sql (int, optional, default nil) Truncates the SQL payload to the specified number of bytes (not UTF-
8 aware) and appends ”...”. If the value is nil no truncation is performed. A negative value will truncate
the specified number of bytes from the end.

Example Heka Configuration

[Sync-1_5-SlowQuery]
type = "LogstreamerInput"
log_directory = "/var/log/mysql"
file_match = ’mysql-slow\.log’
parser_type = "regexp"
delimiter = "\n(# User@Host:)"
delimiter_location = "start"
decoder = "MySqlSlowQueryDecoder"

[MySqlSlowQueryDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/mysql_slow_query.lua"

[MySqlSlowQueryDecoder.config]
truncate_sql = 64

Example Heka Message

Timestamp 2014-05-07 15:51:28 -0700 PDT

Type mysql.slow-query

Hostname 127.0.0.1

Pid 0

UUID 5324dd93-47df-485b-a88e-429f0fcd57d6

Logger Sync-1_5-SlowQuery

Payload /* [queryName=FIND_ITEMS] */ SELECT bso.userid, bso.collection, ...

EnvVersion

Severity 7

Fields

name:”Rows_examined” value_type:DOUBLE value_double:16458
name:”Query_time” value_type:DOUBLE representation:”s” value_double:7.24966
name:”Rows_sent” value_type:DOUBLE value_double:5001
name:”Lock_time” value_type:DOUBLE representation:”s” value_double:0.047038

2.5.9 Nginx Error Log Decoder

New in version 0.6.

Parses the Nginx error logs based on the Nginx hard coded internal format.

Config:

• tz (string, optional, defaults to UTC) The conversion actually happens on the Go side since there isn’t good
TZ support here.

Example Heka Configuration

2.5. Decoders 47

Heka Documentation, Release 0.7.3

[TestWebserverError]
type = "LogstreamerInput"
log_directory = "/var/log/nginx"
file_match = ’error\.log’
decoder = "NginxErrorDecoder"

[NginxErrorDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/nginx_error.lua"

[NginxErrorDecoder.config]
tz = "America/Los_Angeles"

Example Heka Message

Timestamp 2014-01-10 07:04:56 -0800 PST

Type nginx.error

Hostname trink-x230

Pid 16842

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5

Logger TestWebserverError

Payload using inherited sockets from “6;”

EnvVersion

Severity 5

Fields

name:”tid” value_type:DOUBLE value_double:0
name:”connection” value_type:DOUBLE value_double:8878

2.5.10 PayloadRegexDecoder

Decoder plugin that accepts messages of a specified form and generates new outgoing messages from extracted data,
effectively transforming one message format into another.

Note: The Go regular expression tester is an invaluable tool for constructing and debugging regular expressions to be
used for parsing your input data.

Config:

• match_regex: Regular expression that must match for the decoder to process the message.

• severity_map: Subsection defining severity strings and the numerical value they should be translated to. hekad
uses numerical severity codes, so a severity of WARNING can be translated to 3 by settings in this section.
See Heka Message.

• message_fields: Subsection defining message fields to populate and the interpolated values that should be used.
Valid interpolated values are any captured in a regex in the message_matcher, and any other field that exists
in the message. In the event that a captured name overlaps with a message field, the captured name’s value
will be used. Optional representation metadata can be added at the end of the field name using a pipe
delimiter i.e. ResponseSize|B = “%ResponseSize%” will create Fields[ResponseSize] representing the
number of bytes. Adding a representation string to a standard message header name will cause it to be

48 Chapter 2. hekad Command Line Options

https://regoio.herokuapp.com/

Heka Documentation, Release 0.7.3

added as a user defined field i.e., Payload|json will create Fields[Payload] with a json representation (see
Field Variables).

Interpolated values should be surrounded with % signs, for example:

[my_decoder.message_fields]
Type = "%Type%Decoded"

This will result in the new message’s Type being set to the old messages Type with Decoded appended.

• timestamp_layout (string): A formatting string instructing hekad how to turn a time string into the actual time
representation used internally. Example timestamp layouts can be seen in Go’s time documentation.

• timestamp_location (string): Time zone in which the timestamps in the text are presumed to be in. Should be
a location name corresponding to a file in the IANA Time Zone database (e.g. “America/Los_Angeles”),
as parsed by Go’s time.LoadLocation() function (see http://golang.org/pkg/time/#LoadLocation). Defaults
to “UTC”. Not required if valid time zone info is embedded in every parsed timestamp, since those can be
parsed as specified in the timestamp_layout.

• log_errors (bool): New in version 0.5.

If set to false, payloads that can not be matched against the regex will not be logged as errors. Defaults to
true.

Example (Parsing Apache Combined Log Format):

[apache_transform_decoder]
type = "PayloadRegexDecoder"
match_regex = ’^(?P<RemoteIP>\S+) \S+ \S+ \[(?P<Timestamp>[^\]]+)\] "(?P<Method>[A-Z]+) (?P<Url>[^\s]+)[^"]*" (?P<StatusCode>\d+) (?P<RequestSize>\d+) "(?P<Referer>[^"]*)" "(?P<Browser>[^"]*)"’
timestamp_layout = "02/Jan/2006:15:04:05 -0700"

severities in this case would work only if a (?P<Severity>...) matching
group was present in the regex, and the log file contained this information.
[apache_transform_decoder.severity_map]
DEBUG = 7
INFO = 6
WARNING = 4

[apache_transform_decoder.message_fields]
Type = "ApacheLogfile"
Logger = "apache"
Url|uri = "%Url%"
Method = "%Method%"
Status = "%Status%"
RequestSize|B = "%RequestSize%"
Referer = "%Referer%"
Browser = "%Browser%"

2.5.11 PayloadXmlDecoder

This decoder plugin accepts XML blobs in the message payload and allows you to map parts of the XML into Field
attributes of the pipeline pack message using XPath syntax using the xmlpath library.

Config:

• xpath_map: A subsection defining a capture name that maps to an XPath expression. Each expression can
fetch a single value, if the expression does not resolve to a valid node in the XML blob, the capture group
will be assigned an empty string value.

2.5. Decoders 49

http://golang.org/pkg/time/#pkg-constants
http://golang.org/pkg/time/#LoadLocation
http://launchpad.net/xmlpath

Heka Documentation, Release 0.7.3

• severity_map: Subsection defining severity strings and the numerical value they should be translated to. hekad
uses numerical severity codes, so a severity of WARNING can be translated to 3 by settings in this section.
See Heka Message.

• message_fields: Subsection defining message fields to populate and the interpolated values that should be used.
Valid interpolated values are any captured in an XPath in the message_matcher, and any other field that
exists in the message. In the event that a captured name overlaps with a message field, the captured name’s
value will be used. Optional representation metadata can be added at the end of the field name using a
pipe delimiter i.e. ResponseSize|B = “%ResponseSize%” will create Fields[ResponseSize] representing
the number of bytes. Adding a representation string to a standard message header name will cause it to be
added as a user defined field i.e., Payload|json will create Fields[Payload] with a json representation (see
Field Variables).

Interpolated values should be surrounded with % signs, for example:

[my_decoder.message_fields]
Type = "%Type%Decoded"

This will result in the new message’s Type being set to the old messages Type with Decoded appended.

• timestamp_layout (string): A formatting string instructing hekad how to turn a time string into the actual time
representation used internally. Example timestamp layouts can be seen in Go’s time documentation. The
default layout is ISO8601 - the same as Javascript.

• timestamp_location (string): Time zone in which the timestamps in the text are presumed to be in. Should be
a location name corresponding to a file in the IANA Time Zone database (e.g. “America/Los_Angeles”),
as parsed by Go’s time.LoadLocation() function (see http://golang.org/pkg/time/#LoadLocation). Defaults
to “UTC”. Not required if valid time zone info is embedded in every parsed timestamp, since those can be
parsed as specified in the timestamp_layout.

Example:

[myxml_decoder]
type = "PayloadXmlDecoder"

[myxml_decoder.xpath_map]
Count = "/some/path/count"
Name = "/some/path/name"
Pid = "//pid"
Timestamp = "//timestamp"
Severity = "//severity"

[myxml_decoder.severity_map]
DEBUG = 7
INFO = 6
WARNING = 4

[myxml_decoder.message_fields]
Pid = "%Pid%"
StatCount = "%Count%"
StatName = "%Name%"
Timestamp = "%Timestamp%"

PayloadXmlDecoder’s xpath_map config subsection supports XPath as implemented by the xmlpath library.

• All axes are supported (“child”, “following-sibling”, etc)

• All abbreviated forms are supported (”.”, “//”, etc)

• All node types except for namespace are supported

50 Chapter 2. hekad Command Line Options

http://golang.org/pkg/time/#pkg-constants
http://golang.org/pkg/time/#LoadLocation
http://launchpad.net/xmlpath

Heka Documentation, Release 0.7.3

• Predicates are restricted to [N], [path], and [path=literal] forms

• Only a single predicate is supported per path step

• Richer expressions and namespaces are not supported

2.5.12 ProtobufDecoder

The ProtobufDecoder is used for Heka message objects that have been serialized into protocol buffers format. This
is the format that Heka uses to communicate with other Heka instances, so one will always be included in your Heka
configuration whether specified or not. The ProtobufDecoder has no configuration options.

The hekad protocol buffers message schema in defined in the message.proto file in the message package.

Example:

[ProtobufDecoder]

See also:

Protocol Buffers - Google’s data interchange format

2.5.13 Rsyslog Decoder

New in version 0.5.

Parses the rsyslog output using the string based configuration template.

Config:

• template (string) The ‘template’ configuration string from rsyslog.conf. http://rsyslog-5-8-6-
doc.neocities.org/rsyslog_conf_templates.html

• tz (string, optional, defaults to UTC) If your rsyslog timestamp field in the template does not carry zone offset
information, you may set an offset to be applied to your events here. Typically this would be used with the
“Traditional” rsyslog formats.

Parsing is done by Go, supports values of “UTC”, “Local”, or a location name corresponding to a file in
the IANA Time Zone database, e.g. “America/New_York”.

Example Heka Configuration

[RsyslogDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/rsyslog.lua"

[RsyslogDecoder.config]
type = "RSYSLOG_TraditionalFileFormat"
template = ’%TIMESTAMP% %HOSTNAME% %syslogtag%%msg:::sp-if-no-1st-sp%%msg:::drop-last-lf%\n’
tz = "America/Los_Angeles"

Example Heka Message

Timestamp 2014-02-10 12:58:58 -0800 PST

Type RSYSLOG_TraditionalFileFormat

Hostname trink-x230

Pid 0

UUID e0eef205-0b64-41e8-a307-5772b05e16c1

2.5. Decoders 51

http://code.google.com/p/protobuf/
http://rsyslog-5-8-6-doc.neocities.org/rsyslog_conf_templates.html
http://rsyslog-5-8-6-doc.neocities.org/rsyslog_conf_templates.html
http://golang.org/pkg/time/#LoadLocation

Heka Documentation, Release 0.7.3

Logger RsyslogInput

Payload “imklog 5.8.6, log source = /proc/kmsg started.”

EnvVersion

Severity 7

Fields

name:”programname” value_string:”kernel”

2.5.14 SandboxDecoder

The SandboxDecoder provides an isolated execution environment for data parsing and complex transformations with-
out the need to recompile Heka. See Sandbox. Config:

• config_common_sandbox_parameters

Example

[sql_decoder]
type = "SandboxDecoder"
filename = "sql_decoder.lua"

2.5.15 ScribbleDecoder

New in version 0.5.

The ScribbleDecoder is a trivial decoder that makes it possible to set one or more static field values on every decoded
message. It is often used in conjunction with another decoder (i.e. in a MultiDecoder w/ cascade_strategy set to
“all”) to, for example, set the message type of every message to a specific custom value after the messages have been
decoded from Protocol Buffers format. Note that this only supports setting the exact same value on every message,
if any dynamic computation is required to determine what the value should be, or whether it should be applied to a
specific message, a SandboxDecoder using the provided write_message API call should be used instead.

Config:

• message_fields: Subsection defining message fields to populate. Optional representation metadata can be added
at the end of the field name using a pipe delimiter i.e. host|ipv4 = “192.168.55.55” will create Fields[Host]
containing an IPv4 address. Adding a representation string to a standard message header name will cause it
to be added as a user defined field, i.e. Payload|json will create Fields[Payload] with a json representation
(see Field Variables). Does not support Timestamp or Uuid.

Example (in MultiDecoder context)

[mytypedecoder]
type = "MultiDecoder"
subs = ["ProtobufDecoder", "mytype"]
cascade_strategy = "all"
log_sub_errors = true

[ProtobufDecoder]

[mytype]
type = "ScribbleDecoder"

[mytype.message_fields]
Type = "MyType"

52 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

2.5.16 StatsToFieldsDecoder

New in version 0.4.

The StatsToFieldsDecoder will parse time series statistics data in the graphite message format and encode the data into
the message fields, in the same format produced by a StatAccumInput plugin with the emit_in_fields value set to true.
This is useful if you have externally generated graphite string data flowing through Heka that you’d like to process
without having to roll your own string parsing code.

This decoder has no configuration options. It simply expects to be passed messages with statsd string data in the
payload. Incorrect or malformed content will cause a decoding error, dropping the message.

The fields format only contains a single “timestamp” field, so any payloads containing multiple timestamps will end
up generating a separate message for each timestamp. Extra messages will be a copy of the original message except
a) the payload will be empty and b) the unique timestamp and related stats will be the only message fields.

Example:

[StatsToFieldsDecoder]

2.6 Filters

2.6.1 Common Filter Parameters

There are some configuration options that are universally available to all Heka filter plugins. These will be consumed
by Heka itself when Heka initializes the plugin and do not need to be handled by the plugin-specific initialization code.

• message_matcher (string, optional): Boolean expression, when evaluated to true passes the message to the
filter for processing. Defaults to matching nothing. See: Message Matcher Syntax

• message_signer (string, optional): The name of the message signer. If specified only messages with this
signer are passed to the filter for processing.

• ticker_interval (uint, optional): Frequency (in seconds) that a timer event will be sent to the filter. Defaults to
not sending timer events.

• can_exit (bool, optional) New in version 0.7.

Whether or not this plugin can exit without causing Heka to shutdown. Defaults to false for non-sandbox
filters, and true for sandbox filters.

2.6.2 Circular Buffer Delta Aggregator

New in version 0.5.

Collects the circular buffer delta output from multiple instances of an upstream sandbox filter (the filters should all be
the same version at least with respect to their cbuf output). The purpose is to recreate the view at a larger scope in each
level of the aggregation i.e., host view -> datacenter view -> service level view.

Config:

• enable_delta (bool, optional, default false) Specifies whether or not this aggregator should generate cbuf
deltas.

• anomaly_config(string) - (see sandbox_anomaly_module) A list of anomaly detection specifications. If not
specified no anomaly detection/alerting will be performed.

2.6. Filters 53

http://graphite.wikidot.com/getting-your-data-into-graphite#toc4

Heka Documentation, Release 0.7.3

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configura-
tion, then this value should be incremented every time the enable_delta configuration is changed to prevent
the plugin from failing to start during data restoration.

Example Heka Configuration

[TelemetryServerMetricsAggregator]
type = "SandboxFilter"
message_matcher = "Logger == ’TelemetryServerMetrics’ && Fields[payload_type] == ’cbufd’"
ticker_interval = 60
filename = "lua_filters/cbufd_aggregator.lua"
preserve_data = true

[TelemetryServerMetricsAggregator.config]
enable_delta = false
anomaly_config = ’roc("Request Statistics", 1, 15, 0, 1.5, true, false)’
preservation_version = 0

2.6.3 CBuf Delta Aggregator By Hostname

New in version 0.5.

Collects the circular buffer delta output from multiple instances of an upstream sandbox filter (the filters should all be
the same version at least with respect to their cbuf output). Each column from the source circular buffer will become
its own graph. i.e., ‘Error Count’ will become a graph with each host being represented in a column.

Config:

• max_hosts (uint) Pre-allocates the number of host columns in the graph(s). If the number of active hosts
exceed this value, the plugin will terminate.

• rows (uint) The number of rows to keep from the original circular buffer. Storing all the data from all the hosts
is not practical since you will most likely run into memory and output size restrictions (adjust the view
down as necessary).

• host_expiration (uint, optional, default 120 seconds) The amount of time a host has to be inactive before it
can be replaced by a new host.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the max_hosts or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[TelemetryServerMetricsHostAggregator]
type = "SandboxFilter"
message_matcher = "Logger == ’TelemetryServerMetrics’ && Fields[payload_type] == ’cbufd’"
ticker_interval = 60
filename = "lua_filters/cbufd_host_aggregator.lua"
preserve_data = true

[TelemetryServerMetricsHostAggregator.config]
max_hosts = 5
rows = 60
host_expiration = 120
preservation_version = 0

54 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

2.6.4 CounterFilter

Once per ticker interval a CounterFilter will generate a message of type heka .counter-output. The payload will contain
text indicating the number of messages that matched the filter’s message_matcher value during that interval (i.e. it
counts the messages the plugin received). Every ten intervals an extra message (also of type heka.counter-output) goes
out, containing an aggregate count and average per second throughput of messages received.

Config:

• ticker_interval (int, optional): Interval between generated counter messages, in seconds. Defaults to 5.

Example:

[CounterFilter]
message_matcher = "Type != ’heka.counter-output’"

2.6.5 Cpu Stats Filter

New in version 0.7.

Graphs CPU Load and process count data. Expects to receive messages containing fields entitled 1MinAvg, 5MinAvg,
15MinAvg, and NumProcesses, such as those generated by the Linux Cpu Stats Decoder.

Config:

• sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

• rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

• anomaly_config (string, optional) See sandbox_anomaly_module.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the sec_per_row or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[CpuStatsFilter]
type = "SandboxFilter"
filename = "lua_filters/cpustats.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Type == ’stats.cpustats’"

2.6.6 Disk Stats Filter

New in version 0.7.

Graphs disk IO stats. It automatically converts the running totals of Writes and Reads into rates of the values. The
time based fields are left as running totals of the amount of time doing IO. Expects to receive messages with disk
IO data embedded in a particular set of message fields which matches what is generated by Linux Disk Stats De-
coder: WritesCompleted, ReadsCompleted, SectorsWritten, SectorsRead, WritesMerged, ReadsMerged, TimeWrit-
ing, TimeReading, TimeDoingIO, WeightedTimeDoingIO, TickerInterval.

Config:

2.6. Filters 55

Heka Documentation, Release 0.7.3

• rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

• anomaly_config(string) - (see sandbox_anomaly_module)

Example Heka Configuration

[DiskStatsFilter]
type = "SandboxFilter"
filename = "lua_filters/diskstats.lua"
preserve_data = true
message_matcher = "Type == ’stats.diskstats’"

2.6.7 Frequent Items

New in version 0.5.

Calculates the most frequent items in a data stream.

Config:

• message_variable (string) The message variable name containing the items to be counted.

• max_items (uint, optional, default 1000) The maximum size of the sample set (higher will produce a more
accurate list).

• min_output_weight (uint, optional, default 100) Used to reduce the long tail output by only outputting the
higher frequency items.

• reset_days (uint, optional, default 1) Resets the list after the specified number of days (on the UTC day
boundary). A value of 0 will never reset the list.

Example Heka Configuration

[FxaAuthServerFrequentIP]
type = "SandboxFilter"
filename = "lua_filters/frequent_items.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Logger == ’nginx.access’ && Type == ’fxa-auth-server’"

[FxaAuthServerFrequentIP.config]
message_variable = "Fields[remote_addr]"
max_items = 10000
min_output_weight = 100
reset_days = 1

2.6.8 Heka Memory Statistics

New in version 0.6.

Graphs the Heka memory statistics using the heka.memstat message generated by pipeline/report.go.

Config:

• rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

• sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

56 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

• anomaly_config (string, optional) See sandbox_anomaly_module.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the rows or sec_per_row configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[HekaMemstat]
type = "SandboxFilter"
filename = "lua_filters/heka_memstat.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Type == ’heka.memstat’"

2.6.9 Heka Message Schema

New in version 0.5.

Generates documentation for each unique message in a data stream. The output is a hierarchy of Logger, Type,
EnvVersion, and a list of associated message field attributes including their counts (number in the brackets). This
plugin is meant for data discovery/exploration and should not be left running on a production system.

Config:

<none>

Example Heka Configuration

[SyncMessageSchema]
type = "SandboxFilter"
filename = "lua_filters/heka_message_schema.lua"
ticker_interval = 60
preserve_data = false
message_matcher = "Logger =~ /^Sync/"

Example Output

Sync-1_5-Webserver [54600]
slf [54600]

-no version- [54600]
upstream_response_time (mismatch)
http_user_agent (string)
body_bytes_sent (number)
remote_addr (string)
request (string)
upstream_status (mismatch)
status (number)
request_time (number)
request_length (number)

Sync-1_5-SlowQuery [37]
mysql.slow-query [37]

-no version- [37]
Query_time (number)

2.6. Filters 57

Heka Documentation, Release 0.7.3

Rows_examined (number)
Rows_sent (number)
Lock_time (number)

2.6.10 Heka Process Message Failures

New in version 0.7.

Monitors Heka’s process message failures by plugin.

Config:

• anomaly_config(string) - (see sandbox_anomaly_module) A list of anomaly detection specifications. If not
specified a default of ‘mww_nonparametric(“DEFAULT”, 1, 5, 10, 0.7)’ is used. The “DEFAULT” settings
are applied to any plugin without an explict specification.

Example Heka Configuration

[HekaProcessMessageFailures]
type = "SandboxFilter"
filename = "lua_filters/heka_process_message_failures.lua"
ticker_interval = 60
preserve_data = false # the counts are reset on Heka restarts and the monitoring should be too.
message_matcher = "Type == ’heka.all-report’"

2.6.11 HTTP Status Graph

New in version 0.5.

Graphs HTTP status codes using the numeric Fields[status] variable collected from web server access logs.

Config:

• sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

• rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

• anomaly_config (string, optional) See sandbox_anomaly_module.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the sec_per_row or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[FxaAuthServerHTTPStatus]
type = "SandboxFilter"
filename = "lua_filters/http_status.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Logger == ’nginx.access’ && Type == ’fxa-auth-server’"

[FxaAuthServerHTTPStatus.config]
sec_per_row = 60
rows = 1440
anomaly_config = ’roc("HTTP Status", 2, 15, 0, 1.5, true, false) roc("HTTP Status", 4, 15, 0, 1.5, true, false) mww_nonparametric("HTTP Status", 5, 15, 10, 0.8)’
preservation_version = 0

58 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

2.6.12 Memory Stats Filter

New in version 0.7.

Graphs memory usage statistics. Expects to receive messages with memory usage data embedded in a specific set of
message fields, which matches the messages generated by Linux Memory Stats Decoder: MemFree, Cached, Active,
Inactive, VmallocUsed, Shmem, SwapCached.

Config:

• sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

• rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

• anomaly_config (string, optional) See sandbox_anomaly_module.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the sec_per_row or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[MemoryStatsFilter]
type = "SandboxFilter"
filename = "lua_filters/memstats.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Type == ’stats.memstats’"

2.6.13 MySQL Slow Query

New in version 0.6.

Graphs MySQL slow query data produced by the MySQL Slow Query Log Decoder.

Config:

• sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

• rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

• anomaly_config (string, optional) See sandbox_anomaly_module.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the sec_per_row or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[Sync-1_5-SlowQueries]
type = "SandboxFilter"
message_matcher = "Logger == ’Sync-1_5-SlowQuery’"
ticker_interval = 60
filename = "lua_filters/mysql_slow_query.lua"

[Sync-1_5-SlowQueries.config]

2.6. Filters 59

Heka Documentation, Release 0.7.3

anomaly_config = ’mww_nonparametric("Statistics", 5, 15, 10, 0.8)’
preservation_version = 0

2.6.14 StatFilter

Filter plugin that accepts messages of a specfied form and uses extracted message data to generate statsd-style numer-
ical metrics in the form of Stat objects that can be consumed by a StatAccumulator.

Config:

• Metric: Subsection defining a single metric to be generated:

– type (string): Metric type, supports “Counter”, “Timer”, “Gauge”.

– name (string): Metric name, must be unique.

– value (string): Expression representing the (possibly dynamic) value that the StatFilter should emit
for each received message.

• stat_accum_name (string): Name of a StatAccumInput instance that this StatFilter will use as its StatAccu-
mulator for submitting generate stat values. Defaults to “StatAccumInput”.

Example (Assuming you had TransformFilter inserting messages as above):

[StatAccumInput]
ticker_interval = 5

[StatsdInput]
address = "127.0.0.1:29301"

[Hits]
type = "StatFilter"
message_matcher = ’Type == "ApacheLogfile"’

[Hits.Metric.bandwidth]
type = "Counter"
name = "httpd.bytes.%Hostname%"
value = "%Bytes%"

[Hits.Metric.method_counts]
type = "Counter"
name = "httpd.hits.%Method%.%Hostname%"
value = "1"

Note: StatFilter requires an available StatAccumInput to be running.

2.6.15 SandboxFilter

The sandbox filter provides an isolated execution environment for data analysis. Any output generated by the sandbox
is injected into the payload of a new message for further processing or to be output.

Config:

• Common Filter Parameters

• config_common_sandbox_parameters

Example:

60 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

[hekabench_counter]
type = "SandboxFilter"
message_matcher = "Type == ’hekabench’"
ticker_interval = 1
filename = "counter.lua"
preserve_data = true
profile = false

[hekabench_counter.config]
rows = 1440
sec_per_row = 60

2.6.16 SandboxManagerFilter

The SandboxManagerFilter provides dynamic control (start/stop) of sandbox filters in a secure manner without stop-
ping the Heka daemon. Commands are sent to a SandboxManagerFilter using a signed Heka message. The intent is to
have one manager per access control group each with their own message signing key. Users in each group can submit
a signed control message to manage any filters running under the associated manager. A signed message is not an
enforced requirement but it is highly recommended in order to restrict access to this functionality.

SandboxManagerFilter Settings

• Common Filter Parameters

• working_directory (string): The directory where the filter configurations, code, and states are preserved. The
directory can be unique or shared between sandbox managers since the filter names are unique per manager.
Defaults to a directory in ${BASE_DIR}/sbxmgrs with a name generated from the plugin name.

• module_directory (string): The directory where ‘require’ will attempt to load the external Lua modules from.
Defaults to ${SHARE_DIR}/lua_modules.

• max_filters (uint): The maximum number of filters this manager can run.

New in version 0.5.

• memory_limit (uint): The number of bytes managed sandboxes are allowed to consume before being termi-
nated (default 8MiB).

• instruction_limit (uint): The number of instructions managed sandboxes are allowed to execute during the
process_message/timer_event functions before being terminated (default 1M).

• output_limit (uint): The number of bytes managed sandbox output buffers can hold before being terminated
(default 63KiB). Warning: messages exceeding 64KiB will generate an error and be discarded by the
standard output plugins (File, TCP, UDP) since they exceed the maximum message size.

Example

[OpsSandboxManager]
type = "SandboxManagerFilter"
message_signer = "ops"
message_matcher = "Type == ’heka.control.sandbox’" # automatic default setting
max_filters = 100

2.6.17 Stats Graph

New in version 0.7.

2.6. Filters 61

Heka Documentation, Release 0.7.3

Converts stat values extracted from statmetric messages (see StatAccumInput) to circular buffer data and periodically
emits messages containing this data to be graphed by a DashboardOutput. Note that this filter expects the stats data
to be available in the message fields, so the StatAccumInput must be configured with emit_in_fields set to true for this
filter to work correctly.

Config:

• title (string, optional, default “Stats”): Title for the graph output generated by this filter.

• rows (uint, optional, default 300): The number of rows to store in our circular buffer. Each row represents
one time interval.

• sec_per_row (uint, optional, default 1): The number of seconds in each circular buffer time interval.

• stats (string): Space separated list of stat names. Each specified stat will be expected to be found in the fields of
the received statmetric messages, and will be extracted and inserted into its own column in the accumulated
circular buffer.

• stat_labels (string): Space separated list of header label names to use for the extracted stats. Must be in the
same order as the specified stats. Any label longer than 15 characters will be truncated.

• anomaly_config (string, optional): Anomaly detection configuration, see sandbox_anomaly_module.

• preservation_version (uint, optional, default 0): If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time any edits are made to your rows, sec_per_row,
stats, or stat_labels values, or else Heka will fail to start because the preserved data will no longer match
the filter’s data structure.

Example Heka Configuration

[stat-graph]
type = "SandboxFilter"
filename = "lua_filters/stat_graph.lua"
ticker_interval = 10
preserve_data = true
message_matcher = "Type == ’heka.statmetric’"

[stat-graph.config]
title = "Hits and Misses"
rows = 1440
sec_per_row = 10
stats = "stats.counters.hits.count stats.counters.misses.count"
stat_labels = "hits misses"
anomaly_config = ’roc("Hits and Misses", 1, 15, 0, 1.5, true, false) roc("Hits and Misses", 2, 15, 0, 1.5, true, false)’
preservation_version = 0

2.6.18 Unique Items

New in version 0.6.

Counts the number of unique items per day e.g. active daily users by uid.

Config:

• message_variable (string, required) The Heka message variable containing the item to be counted.

• title (string, optional, default “Estimated Unique Daily message_variable”) The graph title for the cbuf out-
put.

• enable_delta (bool, optional, default false) Specifies whether or not this plugin should generate cbuf deltas.
Deltas should be enabled when sharding is used; see: Circular Buffer Delta Aggregator.

62 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configura-
tion, then this value should be incremented every time the enable_delta configuration is changed to prevent
the plugin from failing to start during data restoration.

Example Heka Configuration

[FxaActiveDailyUsers]
type = "SandboxFilter"
filename = "lua_filters/unique_items.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Logger == ’FxaAuth’ && Type == ’request.summary’ && Fields[path] == ’/v1/certificate/sign’ && Fields[errno] == 0"

[FxaActiveDailyUsers.config]
message_variable = "Fields[uid]"
title = "Estimated Active Daily Users"
preservation_version = 0

New in version 0.6.

2.7 Encoders

2.7.1 Alert Encoder

Produces more human readable alert messages.

Config:

<none>

Example Heka Configuration

[FxaAlert]
type = "SmtpOutput"
message_matcher = "((Type == ’heka.sandbox-output’ && Fields[payload_type] == ’alert’) || Type == ’heka.sandbox-terminated’) && Logger =~ /^Fxa/"
send_from = "heka@example.com"
send_to = ["alert@example.com"]
auth = "Plain"
user = "test"
password = "testpw"
host = "localhost:25"
encoder = "AlertEncoder"

[AlertEncoder]
type = "SandboxEncoder"
filename = "lua_encoders/alert.lua"

Example Output

Timestamp 2014-05-14T14:20:18Z

Hostname ip-10-226-204-51

Plugin FxaBrowserIdHTTPStatus

Alert HTTP Status - algorithm: roc col: 1 msg: detected anomaly, standard deviation exceeds 1.5

2.7. Encoders 63

Heka Documentation, Release 0.7.3

2.7.2 ESJsonEncoder

This encoder serializes a Heka message into a clean JSON format, preceded by a separate JSON structure containing
information required for ElasticSearch BulkAPI indexing. The JSON serialization is done by hand, without the use
of Go’s stdlib JSON marshalling. This is so serialization can succeed even if the message contains invalid UTF-8
characters, which will be encoded as U+FFFD.

Config:

• index (string): Name of the ES index into which the messages will be inserted. Supports interpolation of
message field values (from ‘Type’, ‘Hostname’, ‘Pid’, ‘UUID’, ‘Logger’, ‘EnvVersion’, ‘Severity’, a
field name, or a timestamp format) with the use of ‘%{}’ chars, so ‘%{Hostname}-%{Logger}-data’
would add the records to an ES index called ‘some.example.com-processname-data’. Defaults to ‘heka-
%{2006.01.02}’.

• type_name (string): Name of ES record type to create. Supports interpolation of message field values (from
‘Type’, ‘Hostname’, ‘Pid’, ‘UUID’, ‘Logger’, ‘EnvVersion’, ‘Severity’, field name, or a timestamp for-
mat) with the use of ‘%{}’ chars, so ‘%{Hostname}-stat’ would create an ES record with a type of
‘some.example.com-stat’. Defaults to ‘message’.

• fields ([]string): The ‘fields’ parameter specifies that only specific message data should be indexed into Elas-
ticSearch. Available fields to choose are “Uuid”, “Timestamp”, “Type”, “Logger”, “Severity”, “Payload”,
“EnvVersion”, “Pid”, “Hostname”, and “Fields” (where “Fields” causes the inclusion of any and all dy-
namically specified message fields. Defaults to including all of the supported message fields.

• timestamp (string): Format to use for timestamps in generated ES documents. Defaults to “2006-01-
02T15:04:05.000Z”.

• es_index_from_timestamp (bool): When generating the index name use the timestamp from the message in-
stead of the current time. Defaults to false.

• id (string): Allows you to optionally specify the document id for ES to use. Useful for overwriting existing ES
documents. If the value specified is placed within %{}, it will be interpolated to its Field value. Default is
allow ES to auto-generate the id.

• raw_bytes_fields ([]string): This specifies a set of fields which will be passed through to the encoded JSON
output without any processing or escaping. This is useful for fields which contain embedded JSON objects
to prevent the embedded JSON from being escaped as normal strings. Only supports dynamically specified
message fields.

Example

[ESJsonEncoder]
index = "%{Type}-%{2006.01.02}"
es_index_from_timestamp = true
type_name = "%{Type}"

[ElasticSearchOutput]
message_matcher = "Type == ’nginx.access’"
encoder = "ESJsonEncoder"
flush_interval = 50

2.7.3 ESLogstashV0Encoder

This encoder serializes a Heka message into a JSON format, preceded by a separate JSON structure containing in-
formation required for ElasticSearch BulkAPI indexing. The message JSON structure uses the original (i.e. “v0”)
schema popularized by Logstash. Using this schema can aid integration with existing Logstash deployments. This
schema also plays nicely with the default Logstash dashboard provided by Kibana.

64 Chapter 2. hekad Command Line Options

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html
http://logstash.net/
http://www.elasticsearch.org/overview/kibana/

Heka Documentation, Release 0.7.3

The JSON serialization is done by hand, without using Go’s stdlib JSON marshalling. This is so serialization can
succeed even if the message contains invalid UTF-8 characters, which will be encoded as U+FFFD.

Config:

• index (string): Name of the ES index into which the messages will be inserted. Supports interpolation of
message field values (from ‘Type’, ‘Hostname’, ‘Pid’, ‘UUID’, ‘Logger’, ‘EnvVersion’, ‘Severity’, a field
name, or a timestamp format) with the use of ‘%{}’ chars, so ‘%{Hostname}-%{Logger}-data’ would
add the records to an ES index called ‘some.example.com-processname-data’. Defaults to ‘logstash-
%{2006.01.02}’.

• type_name (string): Name of ES record type to create. Supports interpolation of message field values (from
‘Type’, ‘Hostname’, ‘Pid’, ‘UUID’, ‘Logger’, ‘EnvVersion’, ‘Severity’, field name, or a timestamp for-
mat) with the use of ‘%{}’ chars, so ‘%{Hostname}-stat’ would create an ES record with a type of
‘some.example.com-stat’. Defaults to ‘message’.

• fields ([]string): The ‘fields’ parameter specifies that only specific message data should be indexed into Elas-
ticSearch. Available fields to choose are “Uuid”, “Timestamp”, “Type”, “Logger”, “Severity”, “Payload”,
“EnvVersion”, “Pid”, “Hostname”, and “Fields” (where “Fields” causes the inclusion of any and all dy-
namically specified message fields. Defaults to including all of the supported message fields.

• es_index_from_timestamp (bool): When generating the index name use the timestamp from the message in-
stead of the current time. Defaults to false.

• id (string): Allows you to optionally specify the document id for ES to use. Useful for overwriting existing ES
documents. If the value specified is placed within %{}, it will be interpolated to its Field value. Default is
allow ES to auto-generate the id.

• raw_bytes_fields ([]string): This specifies a set of fields which will be passed through to the encoded JSON
output without any processing or escaping. This is useful for fields which contain embedded JSON objects
to prevent the embedded JSON from being escaped as normal strings. Only supports dynamically specified
message fields.

Example

[ESLogstashV0Encoder]
es_index_from_timestamp = true
type_name = "%{Type}"

[ElasticSearchOutput]
message_matcher = "Type == ’nginx.access’"
encoder = "ESLogstashV0Encoder"
flush_interval = 50

2.7.4 ESPayloadEncoder

Prepends ElasticSearch BulkAPI index JSON to a message payload.

Config:

• index (string, optional, default “heka-%{%Y.%m.%d}”) String to use as the _index key’s value in the gen-
erated JSON. Supports field interpolation as described below.

• type_name (string, optional, default “message”) String to use as the _type key’s value in the generated JSON.
Supports field interpolation as described below.

• id (string, optional) String to use as the _id key’s value in the generated JSON. Supports field interpolation as
described below.

2.7. Encoders 65

Heka Documentation, Release 0.7.3

• es_index_from_timestamp (boolean, optional) If true, then any time interpolation (often used to generate the
ElasticSeach index) will use the timestamp from the processed message rather than the system time.

Field interpolation:

Data from the current message can be interpolated into any of the string arguments listed above. A %{}
enclosed field name will be replaced by the field value from the current message. Supported default field
names are “Type”, “Hostname”, “Pid”, “UUID”, “Logger”, “EnvVersion”, and “Severity”. Any other
values will be checked against the defined dynamic message fields. If no field matches, then a C strftime
(on non-Windows platforms) or C89 strftime (on Windows) time substitution will be attempted.

Example Heka Configuration

[es_payload]
type = "SandboxEncoder"
filename = "lua_encoders/es_payload.lua"

[es_payload.config]
es_index_from_timestamp = true
index = "%{Logger}-%{%Y.%m.%d}"
type_name = "%{Type}-%{Hostname}"

[ElasticSearchOutput]
message_matcher = "Type == ’mytype’"
encoder = "es_payload"

Example Output

{"index":{"_index":"mylogger-2014.06.05","_type":"mytype-host.domain.com"}}
{"json":"data","extracted":"from","message":"payload"}

2.7.5 PayloadEncoder

The PayloadEncoder simply extracts the payload from the provided Heka message and converts it into a byte stream
for delivery to an external resource. Config:

• append_newlines (bool, optional): Specifies whether or not a newline character (i.e. n) will be appended to
the captured message payload before serialization. Defaults to true.

• prefix_ts (bool, optional): Specifies whether a timestamp will be prepended to the captured message payload
before serialization. Defaults to false.

• ts_from_message (bool, optional): If true, the prepended timestamp will be extracted from the message that
is being processed. If false, the prepended timestamp will be generated by the system clock at the time of
message processing. Defaults to true. This setting has no impact if prefix_ts is set to false.

• ts_format (string, optional): Specifies the format that should be used for prepended timestamps, using Go’s
standard time format specification strings. Defaults to [2006/Jan/02:15:04:05 -0700]. If the specified
format string does not end with a space character, then a space will be inserted between the formatted
timestamp and the payload.

Example

[PayloadEncoder]
append_newlines = false
prefix_ts = true
ts_format = "2006/01/02 3:04:05PM MST"

66 Chapter 2. hekad Command Line Options

http://man7.org/linux/man-pages/man3/strftime.3.html
http://msdn.microsoft.com/en-us/library/fe06s4ak.aspx
http://golang.org/pkg/time/#pkg-constants

Heka Documentation, Release 0.7.3

2.7.6 ProtobufEncoder

The ProtobufEncoder is used to serialize Heka message objects back into Heka’s standard protocol buffers format.
This is the format that Heka uses to communicate with other Heka instances, so one will always be included in your
Heka configuration using the default “ProtobufEncoder” name whether specified or not.

The hekad protocol buffers message schema is defined in the message.proto file in the message package.

Config:

<none>

Example:

[ProtobufEncoder]

See also:

Protocol Buffers - Google’s data interchange format

2.7.7 RstEncoder

The RstEncoder generates a reStructuredText rendering of a Heka message, including all fields and attributes. It is
useful for debugging, especially when coupled with a LogOutput.

Config:

<none>

Example:

[RstEncoder]

[LogOutput]
message_matcher = "TRUE"
encoder = "RstEncoder"

2.7.8 SandboxEncoder

The SandboxEncoder provides an isolated execution environment for converting messages into binary data without
the need to recompile Heka. See Sandbox. Config:

• config_common_sandbox_parameters

Example

[custom_json_encoder]
type = "SandboxEncoder"
filename = "path/to/custom_json_encoder.lua"

[custom_json_encoder.config]
msg_fields = ["field1", "field2"]

2.7.9 StatMetric Influx Encoder

Extracts data from message fields in heka.statmetric messages generated by a StatAccumInput and generates JSON
suitable for use with InfluxDB’s HTTP API. StatAccumInput must be configured with emit_in_fields = true for this
encoder to work correctly.

2.7. Encoders 67

http://code.google.com/p/protobuf/
http://docutils.sourceforge.net/rst.html
http://influxdb.com/docs/v0.7/api/reading_and_writing_data.html

Heka Documentation, Release 0.7.3

Example Heka Configuration

[statmetric-influx-encoder]
type = "SandboxEncoder"
filename = "lua_encoders/statmetric_influx.lua"

[influx]
type = "HttpOutput"
message_matcher = "Type == ’heka.statmetric’"
address = "http://myinfluxserver.example.com:8086/db/stats/series"
encoder = "statmetric-influx-encoder"
username = "influx_username"
password = "influx_password"

Example Output

[{"points":[[1408404848,78271]],"name":"stats.counters.000000.rate","columns":["time","value"]},{"points":[[1408404848,78271]],"name":"stats.counters.000000.count","columns":["time","value"]},{"points":[[1408404848,17420]],"name":"stats.timers.000001.count","columns":["time","value"]},{"points":[[1408404848,17420]],"name":"stats.timers.000001.count_ps","columns":["time","value"]},{"points":[[1408404848,1]],"name":"stats.timers.000001.lower","columns":["time","value"]},{"points":[[1408404848,1024]],"name":"stats.timers.000001.upper","columns":["time","value"]},{"points":[[1408404848,8937851]],"name":"stats.timers.000001.sum","columns":["time","value"]},{"points":[[1408404848,513.07985074627]],"name":"stats.timers.000001.mean","columns":["time","value"]},{"points":[[1408404848,461.72356167879]],"name":"stats.timers.000001.mean_90","columns":["time","value"]},{"points":[[1408404848,925]],"name":"stats.timers.000001.upper_90","columns":["time","value"]},{"points":[[1408404848,2]],"name":"stats.statsd.numStats","columns":["time","value"]}]

2.8 Outputs

2.8.1 Common Output Parameters

There are some configuration options that are universally available to all Heka output plugins. These will be consumed
by Heka itself when Heka initializes the plugin and do not need to be handled by the plugin-specific initialization code.

• message_matcher (string, optional): Boolean expression, when evaluated to true passes the message to the
filter for processing. Defaults to matching nothing. See: Message Matcher Syntax

• message_signer (string, optional): The name of the message signer. If specified only messages with this
signer are passed to the filter for processing.

• ticker_interval (uint, optional): Frequency (in seconds) that a timer event will be sent to the filter. Defaults to
not sending timer events.

• encoder (string, optional): New in version 0.6.

Encoder to be used by the output. This should refer to the name of an encoder plugin section that is
specified elsewhere in the TOML configuration. Messages can be encoded using the specified encoder by
calling the OutputRunner’s Encode() method.

• use_framing (bool, optional): New in version 0.6.

Specifies whether or not Heka’s Stream Framing should be applied to the binary data returned from the
OutputRunner’s Encode() method.

• can_exit (bool, optional) New in version 0.7.

Whether or not this plugin can exit without causing Heka to shutdown. Defaults to false.

2.8.2 AMQPOutput

Connects to a remote AMQP broker (RabbitMQ) and sends messages to the specified queue. The message is serialized
if specified, otherwise only the raw payload of the message will be sent. As AMQP is dynamically programmable, the
broker topology needs to be specified.

Config:

• url (string): An AMQP connection string formatted per the RabbitMQ URI Spec.

68 Chapter 2. hekad Command Line Options

http://www.rabbitmq.com/uri-spec.html

Heka Documentation, Release 0.7.3

• exchange (string): AMQP exchange name

• exchange_type (string): AMQP exchange type (fanout, direct, topic, or headers).

• exchange_durability (bool): Whether the exchange should be configured as a durable exchange. Defaults to
non-durable.

• exchange_auto_delete (bool): Whether the exchange is deleted when all queues have finished and there is no
publishing. Defaults to auto-delete.

• routing_key (string): The message routing key used to bind the queue to the exchange. Defaults to empty
string.

• persistent (bool): Whether published messages should be marked as persistent or transient. Defaults to non-
persistent.

• retries (RetryOptions, optional): A sub-section that specifies the settings to be used for restart behavior. See
configuring_restarting

New in version 0.6.

• content_type (string): MIME content type of the payload used in the AMQP header. Defaults to “applica-
tion/hekad”.

• encoder (string, optional) Specifies which of the registered encoders should be used for converting Heka mes-
sages to binary data that is sent out over the AMQP connection. Defaults to the always available “Proto-
bufEncoder”.

• use_framing (bool, optional): Specifies whether or not the encoded data sent out over the TCP connection
should be delimited by Heka’s Stream Framing. Defaults to true.

New in version 0.6.

• tls (TlsConfig): An optional sub-section that specifies the settings to be used for any SSL/TLS encryption. This
will only have any impact if URL uses the AMQPS URI scheme. See Configuring TLS.

Example (that sends log lines from the logger):

[AMQPOutput]
url = "amqp://guest:guest@rabbitmq/"
exchange = "testout"
exchange_type = "fanout"
message_matcher = ’Logger == "TestWebserver"’

2.8.3 CarbonOutput

CarbonOutput plugins parse the “stat metric” messages generated by a StatAccumulator and write the extracted
counter, timer, and gauge data out to a graphite compatible carbon daemon. Output is written over a TCP or UDP
socket using the plaintext protocol.

Config:

• address (string): An IP address:port on which this plugin will write to. (default: “localhost:2003”)

New in version 0.5.

• protocol (string): “tcp” or “udp” (default: “tcp”)

• tcp_keep_alive (bool) if set, keep the TCP connection open and reuse it until a failure; then retry (default:
false)

Example:

2.8. Outputs 69

http://graphite.wikidot.com/
http://graphite.wikidot.com/carbon
http://graphite.readthedocs.org/en/1.0/feeding-carbon.html#the-plaintext-protocol

Heka Documentation, Release 0.7.3

[CarbonOutput]
message_matcher = "Type == ’heka.statmetric’"
address = "localhost:2003"
protocol = "udp"

2.8.4 DashboardOutput

Specialized output plugin that listens for certain Heka reporting message types and generates JSON data which is
made available via HTTP for use in web based dashboards and health reports.

Config:

• ticker_interval (uint): Specifies how often, in seconds, the dashboard files should be updated. Defaults to 5.

• message_matcher (string): Defaults to “Type == ‘heka.all-report’ || Type == ‘heka.sandbox-output’ || Type
== ‘heka.sandbox-terminated”’. Not recommended to change this unless you know what you’re doing.

• address (string): An IP address:port on which we will serve output via HTTP. Defaults to “0.0.0.0:4352”.

• working_directory (string): File system directory into which the plugin will write data files and from which
it will serve HTTP. The Heka process must have read / write access to this directory. Relative paths will
be evaluated relative to the Heka base directory. Defaults to $(BASE_DIR)/dashboard.

• static_directory (string): File system directory where the Heka dashboard source code can be found. The
Heka process must have read access to this directory. Relative paths will be evaluated relative to the Heka
base directory. Defaults to ${SHARE_DIR}/dasher.

New in version 0.7.

• headers (subsection, optional): It is possible to inject arbitrary HTTP headers into each outgoing response
by adding a TOML subsection entitled “headers” to you HttpOutput config section. All entries in the
subsection must be a list of string values.

Example:

[DashboardOutput]
ticker_interval = 30

2.8.5 ElasticSearchOutput

Output plugin that uses HTTP or UDP to insert records into an ElasticSearch database. Note that it is up to the specified
encoder to both serialize the message into a JSON structure and to prepend that with the appropriate ElasticSearch
BulkAPI indexing JSON. Usually this output is used in conjunction with an ElasticSearch-specific encoder plugin,
such as ESJsonEncoder, ESLogstashV0Encoder, or ESPayloadEncoder.

Config:

• flush_interval (int): Interval at which accumulated messages should be bulk indexed into ElasticSearch, in
milliseconds. Defaults to 1000 (i.e. one second).

• flush_count (int): Number of messages that, if processed, will trigger them to be bulk indexed into Elastic-
Search. Defaults to 10.

• server (string): ElasticSearch server URL. Supports http://, https:// and udp:// urls. Defaults to
“http://localhost:9200”.

• http_timeout (int): Time in milliseconds to wait for a response for each http post to ES. This may drop data as
there is currently no retry. Default is 0 (no timeout).

70 Chapter 2. hekad Command Line Options

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html
http://
https://

Heka Documentation, Release 0.7.3

Example:

[ElasticSearchOutput]
message_matcher = "Type == ’sync.log’"
server = "http://es-server:9200"
flush_interval = 5000
flush_count = 10
encoder = "ESJsonEncoder"

2.8.6 FileOutput

Writes message data out to a file system.

Config:

• path (string): Full path to the output file.

• perm (string, optional): File permission for writing. A string of the octal digit representation. Defaults to
“644”.

• folder_perm (string, optional): Permissions to apply to directories created for FileOutput’s parent directory if
it doesn’t exist. Must be a string representation of an octal integer. Defaults to “700”.

• flush_interval (uint32, optional): Interval at which accumulated file data should be written to disk, in mil-
liseconds (default 1000, i.e. 1 second). Set to 0 to disable.

• flush_count (uint32, optional): Number of messages to accumulate until file data should be written to disk
(default 1, minimum 1).

• flush_operator (string, optional): Operator describing how the two parameters “flush_interval” and
“flush_count” are combined. Allowed values are “AND” or “OR” (default is “AND”).

New in version 0.6.

• use_framing (bool, optional): Specifies whether or not the encoded data sent out over the TCP connection
should be delimited by Heka’s Stream Framing. Defaults to true if a ProtobufEncoder is used, false other-
wise.

Example:

[counter_file]
type = "FileOutput"
message_matcher = "Type == ’heka.counter-output’"
path = "/var/log/heka/counter-output.log"
prefix_ts = true
perm = "666"
flush_count = 100
flush_operator = "OR"
encoder = "PayloadEncoder"

New in version 0.6.

2.8.7 HttpOutput

A very simple output plugin that uses HTTP GET, POST, or PUT requests to deliver data to an HTTP endpoint. When
using POST or PUT request methods the encoded output will be uploaded as the request body. When using GET the
encoded output will be ignored.

This output doesn’t support any request batching; each received message will generate an HTTP request. Batching can
be achieved by use of a filter plugin that accumulates message data, periodically emitting a single message containing

2.8. Outputs 71

Heka Documentation, Release 0.7.3

the batched, encoded HTTP request data in the payload. An HttpOutput can then be configured to capture these batch
messages, using a PayloadEncoder to extract the message payload.

For now the HttpOutput only supports statically defined request parameters (URL, headers, auth, etc.). Future itera-
tions will provide a mechanism for dynamically specifying these values on a per-message basis.

Config:

• address (string): URL address of HTTP server to which requests should be sent. Must begin with “http://” or
“https://”.

• method (string, optional): HTTP request method to use, must be one of GET, POST, or PUT. Defaults to
POST.

• username (string, optional): If specified, HTTP Basic Auth will be used with the provided user name.

• password (string, optional): If specified, HTTP Basic Auth will be used with the provided password.

• headers (subsection, optional): It is possible to inject arbitrary HTTP headers into each outgoing request by
adding a TOML subsection entitled “headers” to you HttpOutput config section. All entries in the subsec-
tion must be a list of string values.

• tls (subsection, optional): A sub-section that specifies the settings to be used for any SSL/TLS encryption.
This will only have any impact if an “https://” address is used. See Configuring TLS.

Example:

[PayloadEncoder]

[influxdb]
message_matcher = "Type == ’influx.formatted’"
address = "http://influxdb.example.com:8086/db/stats/series"
encoder = "PayloadEncoder"
username = "MyUserName"
password = "MyPassword"

2.8.8 IrcOutput

Connects to an Irc Server and sends messages to the specified Irc channels. Output is encoded using the specified
encoder, and expects output to be properly truncated to fit within the bounds of an Irc message before being receiving
the output.

Config:

• server (string): A host:port of the irc server that Heka will connect to for sending output.

• nick (string): Irc nick used by Heka.

• ident (string): The Irc identity used to login with by Heka.

• password (string, optional): The password used to connect to the Irc server.

• channels (list of strings): A list of Irc channels which every matching Heka message is sent to. If there is a
space in the channel string, then the part after the space is expected to be a password for a protected irc
channel.

• timeout (uint, optional): The maximum amount of time (in seconds) to wait before timing out when connect,
reading, or writing to the Irc server. Defaults to 10.

• tls (TlsConfig, optional): A sub-section that specifies the settings to be used for any SSL/TLS encryption. This
will only have any impact if use_tls is set to true. See Configuring TLS.

72 Chapter 2. hekad Command Line Options

http://
https://
https://

Heka Documentation, Release 0.7.3

• queue_size (uint, optional): This is the maximum amount of messages Heka will queue per Irc channel before
discarding messages. There is also a queue of the same size used if all per-irc channel queues are full. This
is used when Heka is unable to send a message to an Irc channel, such as when it hasn’t joined or has been
disconnected. Defaults to 100.

• rejoin_on_kick (bool, optional): Set this if you want Heka to automatically re-join an Irc channel after being
kicked. If not set, and Heka is kicked, it will not attempt to rejoin ever. Defaults to false.

• ticker_interval (uint, optional): How often (in seconds) heka should send a message to the server. This is on
a per message basis, not per channel. Defaults to 2.

• time_before_reconnect (uint, optional): How long to wait (in seconds) before reconnecting to the Irc server
after being disconnected. Defaults to 3.

• time_before_rejoin (uint, optional): How long to wait (in seconds) before attempting to rejoin an Irc channel
which is full. Defaults to 3.

• max_join_retries (uint, optional): The maximum amount of attempts Heka will attempt to join an Irc channel
before giving up. After attempts are exhausted, Heka will no longer attempt to join the channel. Defaults
to 3.

• verbose_irc_logging (bool, optional): Enable to see raw internal message events Heka is receiving from the
server. Defaults to false.

• encoder (string): Specifies which of the registered encoders should be used for converting Heka messages into
what is sent to the irc channels.

• retries (RetryOptions, optional): A sub-section that specifies the settings to be used for restart behavior. See
configuring_restarting

Example:

[IrcOutput]
message_matcher = ’Type == "alert"’
encoder = "PayloadEncoder"
server = "irc.mozilla.org:6667"
nick = "heka_bot"
ident "heka_ident"
channels = ["#heka_bot_irc testkeypassword"]
rejoin_on_kick = true
queue_size = 200
ticker_interval = 1

2.8.9 LogOutput

Logs messages to stdout using Go’s log package.

Config:

<none>

Example:

[counter_output]
type = "LogOutput"
message_matcher = "Type == ’heka.counter-output’"
encoder = "PayloadEncoder"

2.8. Outputs 73

Heka Documentation, Release 0.7.3

2.8.10 NagiosOutput

Specialized output plugin that listens for Nagios external command message types and delivers passive service check
results to Nagios using either HTTP requests made to the Nagios cmd.cgi API or the use of the send_ncsa binary. The
message payload must consist of a state followed by a colon and then the message e.g., “OK:Service is functioning
properly”. The valid states are: OK|WARNING|CRITICAL|UNKNOWN. Nagios must be configured with a service
name that matches the Heka plugin instance name and the hostname where the plugin is running.

Config:

• url (string, optional): An HTTP URL to the Nagios cmd.cgi. Defaults to http://localhost/nagios/cgi-
bin/cmd.cgi.

• username (string, optional): Username used to authenticate with the Nagios web interface. Defaults to empty
string.

• password (string, optional): Password used to authenticate with the Nagios web interface. Defaults to empty
string.

• response_header_timeout (uint, optional): Specifies the amount of time, in seconds, to wait for a server’s
response headers after fully writing the request. Defaults to 2.

• nagios_service_description (string, optional): Must match Nagios service’s service_description attribute.
Defaults to the name of the output.

• nagios_host (string, optional): Must match the hostname of the server in nagios. Defaults to the Hostname
attribute of the message.

• send_nsca_bin (string, optional): New in version 0.5.

Use send_nsca program, as provided, rather than sending HTTP requests. Not supplying this value means
HTTP will be used, and any other send_nsca_* settings will be ignored.

• send_nsca_args ([]string, optional): New in version 0.5.

Arguments to use with send_nsca, usually at least the nagios hostname, e.g. [”-H”, “na-
gios.somehost.com”]. Defaults to an empty list.

• send_nsca_timeout (int, optional): New in version 0.5.

Timeout for the send_nsca command, in seconds. Defaults to 5.

• use_tls (bool, optional): New in version 0.5.

Specifies whether or not SSL/TLS encryption should be used for the TCP connections. Defaults to false.

• tls (TlsConfig, optional): New in version 0.5.

A sub-section that specifies the settings to be used for any SSL/TLS encryption. This will only have any
impact if use_tls is set to true. See Configuring TLS.

Example configuration to output alerts from SandboxFilter plugins:

[NagiosOutput]
url = "http://localhost/nagios/cgi-bin/cmd.cgi"
username = "nagiosadmin"
password = "nagiospw"
message_matcher = "Type == ’heka.sandbox-output’ && Fields[payload_type] == ’nagios-external-command’ && Fields[payload_name] == ’PROCESS_SERVICE_CHECK_RESULT’"

Example Lua code to generate a Nagios alert:

inject_payload("nagios-external-command", "PROCESS_SERVICE_CHECK_RESULT", "OK:Alerts are working!")

74 Chapter 2. hekad Command Line Options

http://localhost/nagios/cgi-bin/cmd.cgi
http://localhost/nagios/cgi-bin/cmd.cgi

Heka Documentation, Release 0.7.3

2.8.11 SmtpOutput

New in version 0.5.

Outputs a Heka message in an email. The message subject is the plugin name and the message content is controlled
by the payload_only setting. The primary purpose is for email alert notifications e.g., PagerDuty.

Config:

• send_from (string) The email address of the sender. (default: “heka@localhost.localdomain”)

• send_to (array of strings) An array of email addresses where the output will be sent to.

• subject (string) Custom subject line of email. (default: “Heka [SmtpOutput]”)

• host (string) SMTP host to send the email to (default: “127.0.0.1:25”)

• auth (string) SMTP authentication type: “none”, “Plain”, “CRAMMD5” (default: “none”)

• user (string, optional) SMTP user name

• password (string, optional) SMTP user password

Example:

[FxaAlert]
type = "SmtpOutput"
message_matcher = "((Type == ’heka.sandbox-output’ && Fields[payload_type] == ’alert’) || Type == ’heka.sandbox-terminated’) && Logger =~ /^Fxa/"
send_from = "heka@example.com"
send_to = ["alert@example.com"]
auth = "Plain"
user = "test"
password = "testpw"
host = "localhost:25"
encoder = "AlertEncoder"

2.8.12 TcpOutput

Output plugin that delivers Heka message data to a listening TCP connection. Can be used to deliver messages from
a local running Heka agent to a remote Heka instance set up as an aggregator and/or router, or to any other arbitrary
listening TCP server that knows how to process the encoded data.

Config:

• address (string): An IP address:port to which we will send our output data.

• use_tls (bool, optional): Specifies whether or not SSL/TLS encryption should be used for the TCP connections.
Defaults to false.

New in version 0.5.

• tls (TlsConfig, optional): A sub-section that specifies the settings to be used for any SSL/TLS encryption. This
will only have any impact if use_tls is set to true. See Configuring TLS.

• ticker_interval (uint, optional): Specifies how often, in seconds, the output queue files are rolled. Defaults to
300.

New in version 0.6.

• local_address (string, optional): A local IP address to use as the source address for outgoing traffic to this
destination. Cannot currently be combined with TLS connections.

2.8. Outputs 75

mailto:heka@localhost.localdomain

Heka Documentation, Release 0.7.3

• encoder (string, optional): Specifies which of the registered encoders should be used for converting Heka
messages to binary data that is sent out over the TCP connection. Defaults to the always available “Proto-
bufEncoder”.

• use_framing (bool, optional): Specifies whether or not the encoded data sent out over the TCP connection
should be delimited by Heka’s Stream Framing. Defaults to true if a ProtobufEncoder is used, false other-
wise.

• keep_alive (bool): Specifies whether or not TCP keepalive should be used for established TCP connections.
Defaults to false.

• keep_alive_period (int): Time duration in seconds that a TCP connection will be maintained before keepalive
probes start being sent. Defaults to 7200 (i.e. 2 hours).

Example:

[aggregator_output]
type = "TcpOutput"
address = "heka-aggregator.mydomain.com:55"
local_address = "127.0.0.1"
message_matcher = "Type != ’logfile’ && Type != ’heka.counter-output’ && Type != ’heka.all-report’"

New in version 0.7.

2.8.13 UdpOutput

Output plugin that delivers Heka message data to a specified UDP or Unix datagram socket location.

Config:

• net (string, optional): Network type to use for communication. Must be one of “udp”, “udp4”, “udp6”, or
“unixgram”. “unixgram” option only available on systems that support Unix datagram sockets. Defaults
to “udp”.

• address (string): Address to which we will be sending the data. Must be IP:port for net types of “udp”, “udp4”,
or “udp6”. Must be a path to a Unix datagram socket file for net type “unixgram”.

• local_address (string, optional): Local address to use on the datagram packets being generated. Must be
IP:port for net types of “udp”, “udp4”, or “udp6”. Must be a path to a Unix datagram socket file for
net type “unixgram”.

• encoder (string): Name of registered encoder plugin that will extract and/or serialized data from the Heka
message.

Example:

[PayloadEncoder]

[UdpOutput]
address = "myserver.example.com:34567"
encoder = "PayloadEncoder"

2.8.14 WhisperOutput

WhisperOutput plugins parse the “statmetric” messages generated by a StatAccumulator and write the extracted
counter, timer, and gauge data out to a graphite compatible whisper database file tree structure.

Config:

76 Chapter 2. hekad Command Line Options

http://en.wikipedia.org/wiki/Keepalive#TCP_keepalive
http://graphite.wikidot.com/
http://graphite.wikidot.com/whisper

Heka Documentation, Release 0.7.3

• base_path (string): Path to the base directory where the whisper file tree will be written. Absolute paths will
be honored, relative paths will be calculated relative to the Heka base directory. Defaults to “whisper” (i.e.
“$(BASE_DIR)/whisper”).

• default_agg_method (int): Default aggregation method to use for each whisper output file. Supports the fol-
lowing values:

0. Unknown aggregation method.

1. Aggregate using averaging. (default)

2. Aggregate using summation.

3. Aggregate using last received value.

4. Aggregate using maximum value.

5. Aggregate using minimum value.

• default_archive_info ([][]int): Default specification for new whisper db archives. Should be a sequence of
3-tuples, where each tuple describes a time interval’s storage policy: [<offset> <# of secs per datapoint>
<# of datapoints>] (see whisper docs for more info). Defaults to:

[[0, 60, 1440], [0, 900, 8], [0, 3600, 168], [0, 43200, 1456]]

The above defines four archive sections. The first uses 60 seconds for each of 1440 data points, which
equals one day of retention. The second uses 15 minutes for each of 8 data points, for two hours of
retention. The third uses one hour for each of 168 data points, or 7 days of retention. Finally, the fourth
uses 12 hours for each of 1456 data points, representing two years of data.

• folder_perm (string): Permission mask to be applied to folders created in the whisper database file tree. Must
be a string representation of an octal integer. Defaults to “700”.

Example:

[WhisperOutput]
message_matcher = "Type == ’heka.statmetric’"
default_agg_method = 3
default_archive_info = [[0, 30, 1440], [0, 900, 192], [0, 3600, 168], [0, 43200, 1456]]
folder_perm = "755"

2.9 Monitoring Internal State

Heka can emit metrics about it’s internal state to either an outgoing Heka message (and, through the DashboardOutput,
to a web dashboard) or to stdout. Sending SIGUSR1 to hekad on a UNIX will send a plain text report tostdout. On
Windows, you will need to send signal 10 to the hekad process using Powershell.

Sample text output

========[heka.all-report]========
inputRecycleChan:

InChanCapacity: 100
InChanLength: 99

injectRecycleChan:
InChanCapacity: 100
InChanLength: 98

Router:
InChanCapacity: 50
InChanLength: 0
ProcessMessageCount: 26

2.9. Monitoring Internal State 77

Heka Documentation, Release 0.7.3

ProtobufDecoder-0:
InChanCapacity: 50
InChanLength: 0

ProtobufDecoder-1:
InChanCapacity: 50
InChanLength: 0

ProtobufDecoder-2:
InChanCapacity: 50
InChanLength: 0

ProtobufDecoder-3:
InChanCapacity: 50
InChanLength: 0

DecoderPool-ProtobufDecoder:
InChanCapacity: 4
InChanLength: 4

OpsSandboxManager:
InChanCapacity: 50
InChanLength: 0
MatchChanCapacity: 50
MatchChanLength: 0
MatchAvgDuration: 0
ProcessMessageCount: 0

hekabench_counter:
InChanCapacity: 50
InChanLength: 0
MatchChanCapacity: 50
MatchChanLength: 0
MatchAvgDuration: 445
ProcessMessageCount: 0
InjectMessageCount: 0
Memory: 20644
MaxMemory: 20644
MaxInstructions: 18
MaxOutput: 0
ProcessMessageAvgDuration: 0
TimerEventAvgDuration: 78532

LogOutput:
InChanCapacity: 50
InChanLength: 0
MatchChanCapacity: 50
MatchChanLength: 0
MatchAvgDuration: 406

DashboardOutput:
InChanCapacity: 50
InChanLength: 0
MatchChanCapacity: 50
MatchChanLength: 0
MatchAvgDuration: 336

========

To enable the HTTP interface, you will need to enable the dashboard output plugin, see DashboardOutput.

2.10 Extending Heka

The core of the Heka engine is written in the Go programming language. Heka supports five different types of plugins
(inputs, decoders, filters, encoders, and outputs), which are also written in Go. This document will try to provide

78 Chapter 2. hekad Command Line Options

http://golang.org

Heka Documentation, Release 0.7.3

enough information for developers to extend Heka by implementing their own custom plugins. It assumes a small
amount of familiarity with Go, although any reasonably experienced programmer will probably be able to follow
along with no trouble.

NOTE: Heka also supports the use of security sandboxed Lua code for implementing the core logic of decoder, filter,
and encoder plugins. This document only covers the development of Go plugins. You can learn more about sandboxed
plugins in the Sandbox section.

2.10.1 Definitions

You should be familiar with the glossary terminology before proceeding.

2.10.2 Overview

Each Heka plugin type performs a specific task: inputs receive input from the outside world and inject the data into
the Heka pipeline, decoders turn binary data into Message objects that Heka can process, filters perform arbitrary
processing of Heka message data, encoders serialize Heka messages into arbitrary byte streams, and outputs send data
from Heka back to the outside world. Each specific plugin has some custom behaviour, but it also shares behaviour w/
every other plugin of that type. A UDPInput and a TCPInput listen on the network differently, and a LogstreamerInput
(reading files off the file system) doesn’t listen on the network at all, but all of these inputs need to interact w/ the Heka
system to access data structures, gain access to decoders to which we pass our incoming data, respond to shutdown
and other system events, etc.

To support this all Heka plugins except encoders actually consist of two parts: the plugin itself, and an accompanying
“plugin runner”. Inputs have an InputRunner, decoders have a DecoderRunner, filters have a FilterRunner, and Out-
puts have an OutputRunner. The plugin itself contains the plugin-specific behaviour, and is provided by the plugin
developer. The plugin runner contains the shared (by type) behaviour, and is provided by Heka. When Heka starts a
plugin, it a) creates and configures a plugin instance of the appropriate type, b) creates a plugin runner instance of the
appropriate type (passing in the plugin), and c) calls the Start method of the plugin runner. Most plugin runners (all
except decoders) then call the plugin’s Run method, passing themselves and an additional PluginHelper object in as
arguments so the plugin code can use their exposed APIs to interact w/ the Heka system.

For inputs, filters, and outputs, there’s a 1:1 correspondence between sections specified in the config file and running
plugin instances. This is not the case for decoders and encoders, however. Decoder and encoder sections register
possible configurations, but actual decoder and encoder instances aren’t created until they are used by input or output
plugins.

2.10.3 Plugin Configuration

Heka uses a slightly modified version of TOML as its configuration file format (see: Configuring hekad), and provides
a simple mechanism through which plugins can integrate with the configuration loading system to initialize themselves
from settings in hekad’s config file.

The minimal shared interface that a Heka plugin must implement in order to use the config system is (unsurprisingly)
Plugin, defined in pipeline_runner.go:

type Plugin interface {
Init(config interface{}) error

}

During Heka initialization an instance of every plugin listed in the configuration file will be created. The TOML con-
figuration for each plugin will be parsed and the resulting configuration object will be passed in to the above specified
Init method. The argument is of type interface{}. By default the underlying type will be *pipeline.PluginConfig, a
map object that provides config data as key/value pairs. There is also a way for plugins to specify a custom struct to be

2.10. Extending Heka 79

http://www.lua.org
https://github.com/mojombo/toml
https://github.com/mozilla-services/heka/blob/master/pipeline/pipeline_runner.go

Heka Documentation, Release 0.7.3

used instead of the generic PluginConfig type (see Custom Plugin Config Structs). In either case, the config object will
be already loaded with values read in from the TOML file, which your plugin code can then use to initialize itself. The
input, filter, and output plugins will then be started so they can begin processing messages. The decoder and encoder
instances will be thrown away, with new ones created as needed when requested by input (for decoder) or output (for
encoder) plugins.

As an example, imagine we’re writing a filter that will deliver messages to a specific output plugin, but only if they
come from a list of approved hosts. Both ‘hosts’ and ‘output’ would be required in the plugin’s config section. Here’s
one version of what the plugin definition and Init method might look like:

type HostFilter struct {
hosts map[string]bool
output string

}

// Extract hosts value from config and store it on the plugin instance.
func (f *HostFilter) Init(config interface{}) error {

var (
hostsConf interface{}
hosts []interface{}
host string
outputConf interface{}
ok bool

)
conf := config.(pipeline.PluginConfig)
if hostsConf, ok = conf["hosts"]; !ok {

return errors.New("No ’hosts’ setting specified.")
}
if hosts, ok = hostsConf.([]interface{}); !ok {

return errors.New("’hosts’ setting not a sequence.")
}
if outputConf, ok = conf["output"]; !ok {

return errors.New("No ’output’ setting specified.")
}
if f.output, ok = outputConf.(string); !ok {

return errors.New("’output’ setting not a string value.")
}
f.hosts = make(map[string]bool)
for _, h := range hosts {

if host, ok = h.(string); !ok {
return errors.New("Non-string host value.")

}
f.hosts[host] = true

}
return nil

}

(Note that this is a bit of a contrived example. In practice, you would generally route messages to specific outputs
using the Message Matcher Syntax.)

2.10.4 Restarting Plugins

In the event that your plugin fails to initialize properly at startup, hekad will exit. However, once hekad is running, if
the plugin should fail (perhaps because a network connection dropped, a file became unavailable, etc), then the plugin
will exit. If your plugin supports being restarted then when it exits it will be recreated, and restarted until it exhausts
its max retry attempts. At which point it will exit, and heka will shutdown if not configured with can_exit.

To add restart support to your plugin, the Restarting interface defined in the config.go file:

80 Chapter 2. hekad Command Line Options

https://github.com/mozilla-services/heka/blob/master/pipeline/config.go

Heka Documentation, Release 0.7.3

type Restarting interface {
CleanupForRestart()

}

A plugin that implements this interface will not trigger shutdown should it fail while hekad is running. The Cleanup-
ForRestart method will be called when the plugins’ main run method exits, a single time. Then the runner will
repeatedly call the plugins Init method until it initializes successfully. It will then resume running it unless it exits
again at which point the restart process will begin anew.

2.10.5 Custom Plugin Config Structs

In simple cases it might be fine to get plugin configuration data as a generic map of keys and values, but if there
are more than a couple of config settings then checking for, extracting, and validating the values quickly becomes
a lot of work. Heka plugins can instead specify a schema struct for their configuration data, into which the TOML
configuration will be decoded.

Plugins that wish to provide a custom configuration struct should implement the HasConfigStruct interface defined in
the config.go file:

type HasConfigStruct interface {
ConfigStruct() interface{}

}

Any plugin that implements this method should return a struct that can act as the schema for the plugin configuration.
Heka’s config loader will then try to decode the plugin’s TOML config into this struct. Note that this also gives you
a way to specify default config values; you just populate your config struct as desired before returning it from the
ConfigStruct method.

Let’s look at the code for Heka’s UdpOutput, which delivers messages to a UDP listener somewhere. The initialization
code looks as follows:

// This is our plugin struct.
type UdpOutput struct {

*UdpOutputConfig
conn net.Conn

}

// This is our plugin’s config struct
type UdpOutputConfig struct {

// Network type ("udp", "udp4", "udp6", or "unixgram"). Needs to match the
// input type.
Net string
// String representation of the address of the network connection to which
// we will be sending out packets (e.g. "192.168.64.48:3336").
Address string
// Optional address to use as the local address for the connection.
LocalAddress string ‘toml:"local_address"‘

}

// Provides pipeline.HasConfigStruct interface.
func (o *UdpOutput) ConfigStruct() interface{} {

return &UdpOutputConfig{
Net: "udp",

}
}

// Initialize UDP connection

2.10. Extending Heka 81

https://github.com/mozilla-services/heka/blob/master/pipeline/config.go

Heka Documentation, Release 0.7.3

func (o *UdpOutput) Init(config interface{}) (err error) {
o.UdpOutputConfig = config.(*UdpOutputConfig) // assert we have the right config type

if o.Net == "unixgram" {
if runtime.GOOS == "windows" {

return errors.New("Can’t use Unix datagram sockets on Windows.")
}
var unixAddr, lAddr *net.UnixAddr
unixAddr, err = net.ResolveUnixAddr(o.Net, o.Address)
if err != nil {

return fmt.Errorf("Error resolving unixgram address ’%s’: %s", o.Address,
err.Error())

}
if o.LocalAddress != "" {

lAddr, err = net.ResolveUnixAddr(o.Net, o.LocalAddress)
if err != nil {

return fmt.Errorf("Error resolving local unixgram address ’%s’: %s",
o.LocalAddress, err.Error())

}
}
if o.conn, err = net.DialUnix(o.Net, lAddr, unixAddr); err != nil {

return fmt.Errorf("Can’t connect to ’%s’: %s", o.Address,
err.Error())

}
} else {

var udpAddr, lAddr *net.UDPAddr
if udpAddr, err = net.ResolveUDPAddr(o.Net, o.Address); err != nil {

return fmt.Errorf("Error resolving UDP address ’%s’: %s", o.Address,
err.Error())

}
if o.LocalAddress != "" {

lAddr, err = net.ResolveUDPAddr(o.Net, o.LocalAddress)
if err != nil {

return fmt.Errorf("Error resolving local UDP address ’%s’: %s",
o.Address, err.Error())

}
}
if o.conn, err = net.DialUDP(o.Net, lAddr, udpAddr); err != nil {

return fmt.Errorf("Can’t connect to ’%s’: %s", o.Address,
err.Error())

}
}
return

}

In addition to specifying configuration options that are specific to your plugin, it is also possible to use the config
struct to specify default values for the ticker_interval and message_matcher values that are available to all Filter and
Output plugins. If a config struct contains a uint attribute called TickerInterval, that will be used as a default ticker
interval value (in seconds) if none is supplied in the TOML. Similarly, if a config struct contains a string attribute
called MessageMatcher, that will be used as the default message routing rule if none is specified in the configuration
file.

There is an optional configuration interface called WantsName. It provides a a plugin access to its configured name
before the runner has started. The SandboxFilter plugin uses the name to locate/load any preserved state before being
run:

type WantsName interface {
SetName(name string)

82 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

}

There is also a similar WantsPipelineConfig interface that can be used if a plugin needs access to the active
PipelineConfig or GlobalConfigStruct values in the ConfigStruct or Init methods. (If these values are needed in the
Run method they can be retrieved from the PluginRunner.):

type WantsPipelineConfig interface {
SetPipelineConfig(pConfig *pipeline.PipelineConfig)

}

2.10.6 Inputs

Input plugins are responsible for acquiring data from the outside world and injecting this data into the Heka pipeline.
An input might be passively listening for incoming network data or actively scanning external sources (either on the
local machine or over a network). The input plugin interface is:

type Input interface {
Run(ir InputRunner, h PluginHelper) (err error)
Stop()

}

The Run method is called when Heka starts and, if all is functioning as intended, should not return until Heka is shut
down. If a condition arises such that the input can not perform its intended activity it should return with an appropriate
error, otherwise it should continue to run until a shutdown event is triggered by Heka calling the input’s Stop method,
at which time any clean-up should be done and a clean shutdown should be indicated by returning a nil error.

Inside the Run method, an input has three primary responsibilities:

1. Acquire information from the outside world

2. Use acquired information to populate PipelinePack objects that can be processed by Heka.

3. Pass the populated PipelinePack objects on to the appropriate next stage in the Heka pipeline (either to a decoder
plugin so raw input data can be converted to a Message object, or by injecting them directly into the Heka
message router if the Message object is already populated.)

The details of the first step are clearly entirely defined by the plugin’s intended input mechanism(s). Plugins can (and
should!) spin up goroutines as needed to perform tasks such as listening on a network connection, making requests to
external data sources, scanning machine resources and operational characteristics, reading files from a file system, etc.

For the second step, before you can populate a PipelinePack object you have to actually have one. You can get empty
packs from a channel provided to you by the InputRunner. You get the channel itself by calling ir.InChan() and then
pull a pack from the channel whenever you need one.

Often, populating a PipelinePack is as simple as storing the raw data that was retrieved from the outside world in the
pack’s MsgBytes attribute. For efficiency’s sake, it’s best to write directly into the already allocated memory rather
than overwriting the attribute with a []byte slice pointing to a new array. Overwriting the array is likely to lead to a lot
of garbage collector churn.

The third step involves the input plugin deciding where next to pass the PipelinePack and then doing so. Once the
MsgBytes attribute has been set the pack will typically be passed on to a decoder plugin, which will convert the raw
bytes into a Message object, also an attribute of the PipelinePack. An input can gain access to the decoders that
are available by calling PluginHelper.DecoderRunner, which can be used to access decoders by the name they have
been registered as in the config. Each call to PluginHelper.DecoderRunner will spin up a new decoder in its own
goroutine. It’s perfectly fine for an input to ask for multiple decoders; for instance the TcpInput creates one for
each separate TCP connection. All decoders will be closed when Heka shuts down, but if a decoder will not longer
be used (e.g. when a TCP connection is closed in the TcpInput example mentioned above) it’s a good idea to call

2.10. Extending Heka 83

Heka Documentation, Release 0.7.3

PluginHelper.StopDecoderRunner to shut it down or else it will continue to consume system resources throughout the
life of the Heka process.

It is up to the input to decide which decoder should be used. Once the decoder has been determined and fetched from
the PluginHelper the input can call DecoderRunner.InChan() to fetch a DecoderRunner’s input channel upon which
the PipelinePack can be placed.

Sometimes the input itself might wish to decode the data, rather than delegating that job to a separate decoder. In this
case the input can directly populate the pack.Message and set the pack.Decoded value as true, as a decoder would
do. Decoded messages are then injected into Heka’s routing system by calling InputRunner.Inject(pack). The message
will then be delivered to the appropriate filter and output plugins.

One final important detail: if for any reason your input plugin should pull a PipelinePack off of the input chan-
nel and not end up passing it on to another step in the pipeline (i.e. to a decoder or to the router), you must call
PipelinePack.Recycle() to free the pack up to be used again. Failure to do so will cause the PipelinePack pool to be
depleted and will cause Heka to freeze.

2.10.7 Decoders

Decoder plugins are responsible for converting raw bytes containing message data into actual Message struct objects
that the Heka pipeline can process. As with inputs, the Decoder interface is quite simple:

type Decoder interface {
Decode(pack *PipelinePack) (packs []*PipelinePack, err error)

}

There are two optional Decoder interfaces. The first provides the Decoder access to its DecoderRunner object when it
is started:

type WantsDecoderRunner interface {
SetDecoderRunner(dr DecoderRunner)

}

The second provides a notification to the Decoder when the DecoderRunner is exiting:

type WantsDecoderRunnerShutdown interface {
Shutdown()

}

A decoder’s Decode method should extract the raw message data from pack.MsgBytes and attempt to deserialize this
and use the contained information to populate the Message struct pointed to by the pack.Message attribute. Again, to
minimize GC churn, take care to reuse the already allocated memory rather than creating new objects and overwriting
the existing ones.

If the message bytes are decoded successfully then Decode should return a slice of PipelinePack pointers and a nil
error value. The first item in the returned slice (i.e. packs[0]) should be the pack that was passed in to the method. If
the decoding process produces more than one output pack, additonal packs can be appended to the slice.

If decoding fails for any reason, then Decode should return a nil value for the PipelinePack slice, causing the message
to be dropped with no further processing. Returning an appropriate error value will cause Heka to log an error message
about the decoding failure.

2.10.8 Filters

Filter plugins are the message processing engine of the Heka system. They are used to examine and process message
contents, and trigger events based on those contents in real time as messages are flowing through the Heka system.

The filter plugin interface is just a single method:

84 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

type Filter interface {
Run(r FilterRunner, h PluginHelper) (err error)

}

Like input plugins, filters have a Run method which accepts a runner and a helper, and which should not return until
shutdown unless there’s an error condition. And like input plugins, filters should call runner.InChan() to gain access
to the plugin’s input channel.

The similarities end there, however. A filter’s input channel provides pointers to PipelinePack objects, defined in
pipeline_runner.go

The Pack contains a fully decoded Message object from which the filter can extract any desired information.

Upon processing a message, a filter plugin can perform any of three tasks:

1. Pass the original message through unchanged to one or more specific alternative Heka filter or output plugins.

2. Generate one or more new messages, which can be passed to either a specific set of Heka plugins, or which can
be handed back to the router to be checked against all registered plugins’ message_matcher rules.

3. Nothing (e.g. when performing counting / aggregation / roll-ups).

To pass a message through unchanged, a filter can call PluginHelper.Filter() or PluginHelper.Output() to access a filter
or output plugin, and then call that plugin’s Deliver() method, passing in the PipelinePack.

To generate new messages, your filter must call PluginHelper.PipelinePack(msgLoopCount int). The msgloopCount
value to be passed in should be obtained from the MsgLoopCount value on the PipelinePack that you’re already
holding, or possibly zero if the new message is being triggered by a timed ticker instead of an incoming message. The
PipelinePack method will either return a pack ready for you to populate or nil if the loop count is greater than the
configured maximum value, as a safeguard against inadvertently creating infinite message loops.

Once a PipelinePack has been obtained, a filter plugin can populate its Message object. The pack can then be passed
along to a specific plugin (or plugins) as above. Alternatively, the pack can be injected into the Heka message router
queue, where it will be checked against all plugin message matchers, by passing it to the FilterRunner.Inject(pack
*PipelinePack) method. Note that, again as a precaution against message looping, a plugin will not be allowed to
inject a message which would get a positive response from that plugin’s own matcher.

Sometimes a filter will take a specific action triggered by a single incoming message. There are many cases, however,
when a filter is merely collecting or aggregating data from the incoming messages, and instead will be sending out
reports on the data that has been collected at specific intervals. Heka has built-in support for this use case. Any filter
(or output) plugin can include a ticker_interval config setting (in seconds, integers only), which will automatically
be extracted by Heka when the configuration is loaded. Then from within your plugin code you can call FilterRun-
ner.Ticker() and you will get a channel (type <-chan time.Time) that will send a tick at the specified interval. Your
plugin code can listen on the ticker channel and take action as needed.

Observant readers might have noticed that, unlike the Input interface, filters don’t need to implement a Stop method.
Instead, Heka will communicate a shutdown event to filter plugins by closing the input channel from which the filter
is receiving the PipelinePack objects. When this channel is closed, a filter should perform any necessary clean-up and
then return from the Run method with a nil value to indicate a clean exit.

Finally, there is one very important point that all authors of filter plugins should keep in mind: if you are not passing
your received PipelinePack object on to another filter or output plugin for further processing, then you must call
PipelinePack.Recycle() to tell Heka that you are through with the pack. Failure to do so will cause Heka to not free up
the packs for reuse, exhausting the supply and eventually causing the entire pipeline to freeze.

2.10.9 Encoders

Encoder plugins are the inverse of decoders. They convert Message structs into raw bytes that can be delivered to the
outside world. Some encoders will serialize an entire Message struct, such as the ProtobufEncoder which uses Heka’s

2.10. Extending Heka 85

https://github.com/mozilla-services/heka/blob/master/pipeline/pipeline_runner.go

Heka Documentation, Release 0.7.3

native protocol buffers format. Other encoders extract data from the message and insert it into a different format such
as plain text or JSON.

The Encoder interface consists of one method:

Encode(pack *PipelinePack) (output []byte, err error)

This method accepts a PiplelinePack containing a populated message object and returns a byte slice containing the
data that should be sent out, or an error if serialization fails for some reason.

Unlike the other plugin types, encoders don’t have a PluginRunner, nor do they run in their own goroutines. Outputs
invoke encoders directly, by calling the Encode method exposed on the OutputRunner. This has the same signature
as the Encoder interface’s Encode method, to which it will will delegate. If use_framing is set to true in the output’s
configuration, however, the OutputRunner will prepend Heka’s Stream Framing to the generated binary data.

Outputs can also directly access their encoder instance by calling OutputRunner.Encoder(). Encoders themselves don’t
handle the stream framing, however, so it is recommended that outputs use the OutputRunner method instead.

Even though encoders don’t run in their own goroutines, it is possible that they might need to perform some clean up
at shutdown time. If this is so, the encoder can implement the NeedsStopping interface:

Stop()

And the Stop method will be called during the shutdown sequence.

2.10.10 Outputs

Finally we come to the output plugins, which are responsible for receiving Heka messages and using them to generate
interactions with the outside world. The Output interface is nearly identical to the Filter interface:

type Output interface {
Run(or OutputRunner, h PluginHelper) (err error)

}

In fact, there are many ways in which filter and output plugins are similar. Like filters, outputs should call the InChan
method on the provided runner to get an input channel, which will feed PipelinePack objects. Like filters, outputs
should listen on this channel until it is closed, at which time they should perform any necessary clean-up and then
return. And, like filters, any output plugin with a ticker_interval value in the configuration will use that value to create
a ticker channel that can be accessed using the runner’s Ticker method. And, finally, outputs should also be sure to call
PipelinePack.Recycle() when they finish w/ a pack so that Heka knows the pack is freed up for reuse.

The primary way that outputs differ from filters, of course, is that outputs need to serialize (or extract data from) the
messages they receive and then send that data to an external destination. The serialization (or data extraction) should
typically be performed by the output’s specified encoder plugin. The OutputRunner exposes the following methods to
assist with this:

Encode(pack *PipelinePack) (output []byte, err error)
UsesFraming() bool
Encoder() (encoder Encoder)

The Encode method will use the specified encoder to convert the pack’s message to binary data, then if use_framing
was set to true in the output’s configuration it will prepend Heka’s Stream Framing. The UsesFraming method will
tell you whether or not use_framing was set to true. Finally, the Encoder method will return the actual encoder that
was registered. This is useful to check to make sure that an encoder was actually registered, but generally you will
want to use OutputRunner.Encode and not Encoder.Encode, since the latter will not honor the output’s use_framing
specification.

86 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

2.10.11 Registering Your Plugin

The last step you have to take after implementing your plugin is to register it with hekad so it can actually be configured
and used. You do this by calling the pipeline package’s RegisterPlugin function:

func RegisterPlugin(name string, factory func() interface{})

The name value should be a unique identifier for your plugin, and it should end in one of “Input”, “Decoder”, “Filter”,
or “Output”, depending on the plugin type.

The factory value should be a function that returns an instance of your plugin, usually a pointer to a struct, where the
pointer type implements the Plugin interface and the interface appropriate to its type (i.e. Input, Decoder, Filter, or
Output).

This sounds more complicated than it is. Here are some examples from Heka itself:

RegisterPlugin("UdpInput", func() interface{} {return new(UdpInput)})
RegisterPlugin("TcpInput", func() interface{} {return new(TcpInput)})
RegisterPlugin("ProtobufDecoder", func() interface{} {return new(ProtobufDecoder)})
RegisterPlugin("CounterFilter", func() interface{} {return new(CounterFilter)})
RegisterPlugin("StatFilter", func() interface{} {return new(StatFilter)})
RegisterPlugin("LogOutput", func() interface{} {return new(LogOutput)})
RegisterPlugin("FileOutput", func() interface{} {return new(FileOutput)})

It is recommended that RegisterPlugin calls be put in your Go package’s init() function so that you can simply import
your package when building hekad and the package’s plugins will be registered and available for use in your Heka
config file. This is made a bit easier if you use plugin_loader.cmake, see Building hekad with External Plugins.

2.11 Heka Message

2.11.1 Message Variables

• uuid (required, []byte) - 16 byte array containing a type 4 UUID.

• timestamp (required, int64) - Number of nanoseconds since the UNIX epoch.

• type (optional, string) - Type of message i.e. “WebLog”.

• logger (optional, string) - Data source i.e. “Apache”, “TCPInput”, “/var/log/test.log”.

• severity (optional, int32) - Syslog severity level.

• payload (optional, string) - Textual data i.e. log line, filename.

• env_version (optional, string) - Unused, legacy envelope version.

• pid (optional, int32) - Process ID that generated the message.

• hostname (optional, string) - Hostname that generated the message.

• fields (optional, Field) - Array of Field structures.

2.11.2 Field Variables

• name (required, string) - Name of the field (key).

• value_type (optional, int32) - Type of the value stored in this field.

– STRING = 0 (default)

2.11. Heka Message 87

http://golang.org/doc/effective_go.html#init
http://en.wikipedia.org/wiki/Syslog#Severity_levels

Heka Documentation, Release 0.7.3

– BYTES = 1

– INTEGER = 2

– DOUBLE = 3

– BOOL = 4

• representation (optional, string) - Freeform metadata string where you can describe what the data in this field
represents. This information might provide cues to assist with processing, labeling, or rendering of the data
performed by downstream plugins or UI elements. Examples of common usage follow:

– Numeric value representation - In most cases it is the unit.

* count - It is a standard practice to use ‘count’ for raw values with no units.

* KiB

* mm

– String value representation - Ideally it should reference a formal specification but you are free to create you own vocabulary.

* date-time RFC 3339, section 5.6

* email RFC 5322, section 3.4.1

* hostname RFC 1034, section 3.1

* ipv4 RFC 2673, section 3.2

* ipv6 RFC 2373, section 2.2

* uri RFC 3986

– How the representation is/can be used

* data parsing and validation

* unit conversion i.e., B to KiB

* presentation i.e., graph labels, HTML links

• value_* (optional, value_type) - Array of values, only one type will be active at a time.

2.11.3 Stream Framing

Heka has some custom framing that can be used to delimit records when generating a stream of binary data. The
entire structure encapsulating a single message consists of a one byte record separator, one byte representing the
header length, a protobuf encoded message header, a one byte unit separator, and the binary record content (usually a
protobuf encoded Heka message). This message structure is indicated in this diagram:

Record Separator
(byte=0x1E)

Header Length
(byte)

Header
(protocol buffer)

Unit Separator
(byte=0x1F) Message

The header schema is as follows:

88 Chapter 2. hekad Command Line Options

http://en.wikipedia.org/wiki/International_System_of_Units
http://tools.ietf.org/html/rfc3339#section-5.6
http://tools.ietf.org/html/rfc5322#section-3.4.1
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc2673
http://tools.ietf.org/html/rfc2373#section-2.2
http://tools.ietf.org/html/rfc3986

Heka Documentation, Release 0.7.3

• message_length (required, uint32) - length in bytes of the serialized message data

• hmac_hash_function (optional, int32) - enum indicating the hash function used to sign the message, 0 for MD5,
1, for SHA1

• hmac_signer (optional, string) - string token identifying HMAC signer

• hmac_key_version (optional, uint32) - version number of the provided HMAC key

• hmac (optional, []byte) - binary representation of provided HMAC key

Clients interested in decoding a Heka stream will need to read the header length byte to determine the length of the
header, extract the encoded header data and decode this into a Header structure using an appropriate protobuf library.
From this they can then extract the length of the encoded message data, which can then be extracted from the data
stream and processed and/or decoded as needed.

2.12 Message Matcher Syntax

Message matching is done by the hekad router to choose an appropriate filter(s) to run. Every filter that matches will
get a copy of the message.

2.12.1 Examples

• Type == “test” && Severity == 6

• (Severity == 7 || Payload == “Test Payload”) && Type == “test”

• Fields[foo] != “bar”

• Fields[foo][1][0] == ‘alternate’

• Fields[MyBool] == TRUE

• TRUE

• Fields[created] =~ /%TIMESTAMP%/

• Fields[widget] != NIL

2.12.2 Relational Operators

• == equals

• != not equals

• > greater than

• >= greater than equals

• < less than

• <= less than equals

• =~ regular expression match

• !~ regular expression negated match

2.12. Message Matcher Syntax 89

Heka Documentation, Release 0.7.3

2.12.3 Logical Operators

• Parentheses are used for grouping expressions

• && and (higher precedence)

• || or

2.12.4 Boolean

• TRUE

• FALSE

2.12.5 Constants

• NIL used to test the existence (!=) or non-existence (==) of a field variable

– must be placed on the right side of the comparison e.g., Fields[widget] == NIL

2.12.6 Message Variables

• All message variables must be on the left hand side of the relational comparison

• String

– Uuid

– Type

– Logger

– Payload

– EnvVersion

– Hostname

• Numeric

– Timestamp

– Severity

– Pid

• Fields

– Fields[_field_name_] (shorthand for Field[_field_name_][0][0])

– Fields[_field_name_][_field_index_] (shorthand for Field[_field_name_][_field_index_][0])

– Fields[_field_name_][_field_index_][_array_index_]

– If a field type is mis-match for the relational comparison, false will be returned e.g., Fields[foo] == 6
where ‘foo’ is a string

90 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

2.12.7 Quoted String

• single or double quoted strings are allowed

• must be placed on the right side of a relational comparison e.g., Type == ‘test’

2.12.8 Regular Expression String

• enclosed by forward slashes

• must be placed on the right side of the relational comparison e.g., Type =~ /test/

• capture groups will be ignored

See also:

Regular Expression re2 syntax

2.13 Sandbox

Sandboxes are Heka plugins that are implemented in a sandboxed scripting language. They provide a dynamic and
isolated execution environment for data parsing, transformation, and analysis. They allow real time access to data in
production without jeopardizing the integrity or performance of the monitoring infrastructure and do not require Heka
to be recompiled. This broadens the audience that the data can be exposed to and facilitates new uses of the data (i.e.
debugging, monitoring, dynamic provisioning, SLA analysis, intrusion detection, ad-hoc reporting, etc.)

2.13.1 Features

• dynamic loading

– SandboxFilters can be started/stopped on a self-service basis while Heka is running

– SandboxDecoder can only be started/stopped on a Heka restart but no recompilation is required to add
new functionality.

• small - memory requirements are about 16 KiB for a basic sandbox

• fast - microsecond execution times

• stateful - ability to resume where it left off after a restart/reboot

• isolated - failures are contained and malfunctioning sandboxes are terminated

2.13.2 Lua Sandbox

The Lua sandbox provides full access to the Lua language in a sandboxed environment under hekad that enforces
configurable restrictions.

See also:

Lua Reference Manual

2.13. Sandbox 91

http://code.google.com/p/re2/wiki/Syntax
http://www.lua.org/manual/5.1/

Heka Documentation, Release 0.7.3

API

Functions that must be exposed from the Lua sandbox

int process_message() Called by Heka when a message is available to the sandbox. The instruction_limit configura-
tion parameter is applied to this function call.

Arguments none

Return

• < 0 for non-fatal failure (increments ProcessMessageFailures)

• 0 for success

• > 0 for fatal error (terminates the sandbox)

timer_event(ns) Called by Heka when the ticker_interval expires. The instruction_limit configuration parameter is
applied to this function call. This function is only required in SandboxFilters (SandboxDecoders do not support
timer events).

Arguments

• ns (int64) current time in nanoseconds since the UNIX epoch

Return none

Core functions that are exposed to the Lua sandbox

See: https://github.com/mozilla-services/lua_sandbox/blob/master/docs/sandbox_api.md

require(libraryName)

add_to_payload(arg1, arg2, ...argN) Appends the arguments to the payload buffer for incremental construction of
the final payload output (inject_payload finalizes the buffer and sends the message to Heka). This function is
simply a rename of the generic sandbox output function to improve the readability of the plugin code.

Arguments

• arg (number, string, bool, nil, circular_buffer)

Return none

Heka specific functions that are exposed to the Lua sandbox

read_config(variableName) Provides access to the sandbox configuration variables.

Arguments

• variableName (string)

Return number, string, bool, nil depending on the type of variable requested

read_message(variableName, fieldIndex, arrayIndex) Provides access to the Heka message data.

Arguments

• variableName (string)

– raw (accesses the raw MsgBytes in the PipelinePack)

– Uuid

– Type

92 Chapter 2. hekad Command Line Options

https://github.com/mozilla-services/lua_sandbox/blob/master/docs/sandbox_api.md

Heka Documentation, Release 0.7.3

– Logger

– Payload

– EnvVersion

– Hostname

– Timestamp

– Severity

– Pid

– Fields[_name_]

• fieldIndex (unsigned) only used in combination with the Fields variableName

– use to retrieve a specific instance of a repeated field _name_

• arrayIndex (unsigned) only used in combination with the Fields variableName

– use to retrieve a specific element out of a field containing an array

Return number, string, bool, nil depending on the type of variable requested

write_message(variableName, value, representation, fieldIndex, arrayIndex) New in version 0.5.

Decoders only. Mutates specified field value on the message that is being deocded.

Arguments

• variableName (string)

– Uuid (accepts raw bytes or RFC4122 string representation)

– Type (string)

– Logger (string)

– Payload (string)

– EnvVersion (string)

– Hostname (string)

– Timestamp (accepts Unix ns-since-epoch number or a handful of parseable string repre-
sentations.)

– Severity (number or int-parseable string)

– Pid (number or int-parseable string)

– Fields[_name_] (field type determined by value type: bool, number, or string)

• value (bool, number or string)

– value to which field should be set

• representation (string) only used in combination with the Fields variableName

– representation tag to set

• fieldIndex (unsigned) only used in combination with the Fields variableName

– use to set a specfic instance of a repeated field _name_

• arrayIndex (unsigned) only used in combination with the Fields variableName

– use to set a specific element of a field containing an array

2.13. Sandbox 93

Heka Documentation, Release 0.7.3

Return none

read_next_field() Iterates through the message fields returning the field contents or nil when the end is reached.

Arguments none

Return value_type, name, value, representation, count (number of items in the field array)

inject_payload(payload_type, payload_name, arg3, ..., argN)

Creates a new Heka message using the contents of the payload buffer (pre-populated with
add_to_payload) combined with any additional payload_args passed to this function. The output buffer
is cleared after the injection. The payload_type and payload_name arguments are two pieces of optional
metadata. If specified, they will be included as fields in the injected message e.g., Fields[payload_type]
== ‘csv’, Fields[payload_name] == ‘Android Usage Statistics’. The number of messages that may be
injected by the process_message or timer_event functions are globally controlled by the hekad global
configuration options; if these values are exceeded the sandbox will be terminated.

Arguments

• payload_type (optional, default “txt” string) Describes the content type of the injected payload
data.

• payload_name (optional, default “” string) Names the content to aid in downstream filtering.

• arg3 (optional) Same type restrictions as add_to_payload.

• ...

• argN

Return none

inject_message(message_table) Creates a new Heka protocol buffer message using the contents of the specified Lua
table (overwriting whatever is in the output buffer). Notes about message fields:

• Timestamp is automatically generated if one is not provided. Nanosecond since the UNIX epoch is the
only valid format.

• UUID is automatically generated, anything provided by the user is ignored.

• Hostname and Logger are automatically set by the SandboxFilter and cannot be overridden.

• Type is prepended with “heka.sandbox.” by the SandboxFilter to avoid data confusion/mis-representation.

• Fields can be represented in multiple forms and support the following primitive types: string, double, bool. These constructs should be added to the ‘Fields’ table in the message structure. Note: since the Fields structure is a map and not an array, like the protobuf message, fields cannot be repeated.

– name=value i.e., foo=”bar”; foo=1; foo=true

– name={array} i.e., foo={“b”, “a”, “r”}

– name={object} i.e. foo={value=1, representation=”s”}; foo={value={1010, 2200, 1567}, representation=”ms”}

* value (required) may be a single value or an array of values

* representation (optional) metadata for display and unit management

Arguments

• message_table A table with the proper message structure.

Return none

Notes

• injection limits are enforced as described above

94 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

Sample Lua Message Structure

{
Uuid = "data", -- always ignored
Logger = "nginx", -- ignored in the SandboxFilter
Hostname = "bogus.mozilla.com", -- ignored in the SandboxFilter

Timestamp = 1e9,
Type = "TEST", -- will become "heka.sandbox.TEST" in the SandboxFilter
Payload = "Test Payload",
EnvVersion = "0.8",
Pid = 1234,
Severity = 6,
Fields = {

http_status = 200,
request_size = {value=1413, representation="B"}
}

}

2.13.3 Lua Sandbox Tutorial

How to create a simple sandbox filter

1. Implement the required Heka interface in Lua

function process_message ()
return 0

end

function timer_event(ns)
end

2. Add the business logic (count the number of ‘demo’ events per minute)

require "string"

total = 0 -- preserved between restarts since it is in global scope
local count = 0 -- local scope so this will not be preserved

function process_message()
total= total + 1
count = count + 1
return 0

end

function timer_event(ns)
count = 0
inject_payload("txt", "",

string.format("%d messages in the last minute; total=%d", count, total))
end

3. Setup the configuration

[demo_counter]
type = "SandboxFilter"
message_matcher = "Type == ’demo’"
ticker_interval = 60

2.13. Sandbox 95

Heka Documentation, Release 0.7.3

filename = "counter.lua"
preserve_data = true

4. Extending the business logic (count the number of ‘demo’ events per minute per device)

require "string"

device_counters = {}

function process_message()
local device_name = read_message("Fields[DeviceName]")
if device_name == nil then

device_name = "_unknown_"
end

local dc = device_counters[device_name]
if dc == nil then

dc = {count = 1, total = 1}
device_counters[device_name] = dc

else
dc.count = dc.count + 1
dc.total = dc.total + 1

end
return 0

end

function timer_event(ns)
add_to_payload("#device_name\tcount\ttotal\n")
for k, v in pairs(device_counters) do

add_to_payload(string.format("%s\t%d\t%d\n", k, v.count, v.total))
v.count = 0

end
inject_payload()

end

2.13.4 SandboxManagerFilter

The SandboxManagerFilter provides dynamic control (start/stop) of sandbox filters in a secure manner without stop-
ping the Heka daemon. Commands are sent to a SandboxManagerFilter using a signed Heka message. The intent is to
have one manager per access control group each with their own message signing key. Users in each group can submit
a signed control message to manage any filters running under the associated manager. A signed message is not an
enforced requirement but it is highly recommended in order to restrict access to this functionality.

SandboxManagerFilter Settings

• Common Filter Parameters

• working_directory (string): The directory where the filter configurations, code, and states are preserved. The
directory can be unique or shared between sandbox managers since the filter names are unique per manager.
Defaults to a directory in ${BASE_DIR}/sbxmgrs with a name generated from the plugin name.

• module_directory (string): The directory where ‘require’ will attempt to load the external Lua modules from.
Defaults to ${SHARE_DIR}/lua_modules.

• max_filters (uint): The maximum number of filters this manager can run.

New in version 0.5.

96 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

• memory_limit (uint): The number of bytes managed sandboxes are allowed to consume before being termi-
nated (default 8MiB).

• instruction_limit (uint): The number of instructions managed sandboxes are allowed to execute during the
process_message/timer_event functions before being terminated (default 1M).

• output_limit (uint): The number of bytes managed sandbox output buffers can hold before being terminated
(default 63KiB). Warning: messages exceeding 64KiB will generate an error and be discarded by the
standard output plugins (File, TCP, UDP) since they exceed the maximum message size.

Example

[OpsSandboxManager]
type = "SandboxManagerFilter"
message_signer = "ops"
message_matcher = "Type == ’heka.control.sandbox’" # automatic default setting
max_filters = 100

Control Message

The sandbox manager control message is a regular Heka message with the following variables set to the specified
values.

Starting a SandboxFilter

• Type: “heka.control.sandbox”

• Payload: sandbox code

• Fields[action]: “load”

• Fields[config]: the TOML configuration for the SandboxFilter

Stopping a SandboxFilter

• Type: “heka.control.sandbox”

• Fields[action]: “unload”

• Fields[name]: The SandboxFilter name specified in the configuration

heka-sbmgr

Heka Sbmgr is a tool for managing (starting/stopping) sandbox filters by generating the control messages defined
above.

Command Line Options

heka-sbmgr [-config config_file] [-action load|unload] [-filtername specified on unload] [-script sand-
box script filename] [-scriptconfig sandbox script configuration filename]

Configuration Variables

• ip_address (string): IP address of the Heka server.

• use_tls (bool): Specifies whether or not SSL/TLS encryption should be used for the TCP connections. Defaults
to false.

• signer (object): Signer information for the encoder.

– name (string): The name of the signer.

– hmac_hash (string): md5 or sha1

2.13. Sandbox 97

Heka Documentation, Release 0.7.3

– hmac_key (string): The key the message will be signed with.

– version (int): The version number of the hmac_key.

• tls (TlsConfig): A sub-section that specifies the settings to be used for any SSL/TLS encryption. This will only
have any impact if use_tls is set to true. See Configuring TLS.

Example

ip_address = "127.0.0.1:5565"
use_tls = true
[signer]

name = "test"
hmac_hash = "md5"
hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
version = 0

[tls]
cert_file = "heka.crt"
key_file = "heka.key"
client_auth = "NoClientCert"
prefer_server_ciphers = true
min_version = "TLS11"

heka-sbmgrload

Heka Sbmgrload is a test tool for starting/stopping a large number of sandboxes. The script and configuration are built
into the tool and the filters will be named: CounterSandboxN where N is the instance number.

Command Line Options

heka-sbmgrload [-config config_file] [-action load|unload] [-num number of sandbox instances]

Configuration Variables (same as heka-sbmgr)

2.13.5 Tutorial - How to use the dynamic sandboxes

SandboxManager/Heka Setup

1. Configure the SandboxManagerFilter.

The SandboxManagerFilters are defined in the hekad configuration file and are created when hekad starts. The manager
provides a location/namespace for SandboxFilters to run and controls access to this space via a signed Heka message.
By associating a message_signer with the manager we can restrict who can load and unload the associated filters. Lets
start by configuring a SandboxManager for a specific set of users; platform developers. Choose a unique filter name
[PlatformDevs] and a signer name “PlatformDevs”, in this case we will use the same name for each.

[PlatformDevs]
type = "SandboxManagerFilter"
message_signer = "PlatformDevs"
working_directory = "/var/heka/sandbox"
max_filters = 100

2. Configure the input that will receive the SandboxManager control messages.

For this setup we will extend the current TCP input to handle our signed messages. The signer section consists of the
signer name followed by an underscore and the key version number (the reason for this notation is to simply flatten

98 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

the signer configuration structure into a single map). Multiple key versions are allowed to be active at the same time
facilitating the rollout of new keys.

[TCP:5565]
type = "TcpInput"
parser_type = "message.proto"
decoder = "ProtobufDecoder"
address = ":5565"

[TCP:5565.signer.PlatformDevs_0]
hmac_key = "Old Platform devs signing key"
[TCP:5565.signer.PlatformDevs_1]
hmac_key = "Platform devs signing key"

3. Configure the sandbox manager utility (sbmgr). The signer information must exactly match the values in the input
configuration above otherwise the messages will be discarded. Save the file as PlatformDevs.toml.

ip_address = ":5565"
[signer]

name = "PlatformDevs"
hmac_hash = "md5"
hmac_key = "Platform devs signing key"
version = 1

SandboxFilter Setup

1. Create a SandboxFilter script and save it as “example.lua”. See lua_tutorials for more detail.

require "circular_buffer"

data = circular_buffer.new(1440, 1, 60) -- message count per minute
local COUNT = data:set_header(1, "Messages", "count")
function process_message ()

local ts = read_message("Timestamp")
data:add(ts, COUNT, 1)
return 0

end

function timer_event(ns)
inject_payload("cbuf", "", data)

end

2. Create the SandboxFilter configuration and save it as “example.toml”.

The only difference between a static and dynamic SandboxFilter configuration is the filename. In the dynamic config-
uration it can be left blank or left out entirely. The manager will assign the filter a unique system wide name, in this
case, “PlatformDevs-Example”.

[Example]
type = "SandboxFilter"
message_matcher = "Type == ’Widget’"
ticker_interval = 60
filename = ""
preserve_data = false

3. Load the filter using sbmgr.

sbmgr -action=load -config=PlatformDevs.toml -script=example.lua -scriptconfig=example.toml

If you are running the DashboardOutput the following links are available:

2.13. Sandbox 99

Heka Documentation, Release 0.7.3

• Information about the running filters: http://localhost:4352/heka_report.html.

• Graphical Output (after 1 minute in this case): http://localhost:4352 /PlatformDevs-Example.html

Otherwise

• Information about the terminated filters: http://localhost:4352/heka_sandbox_termination.html.

Note: A running filter cannot be ‘reloaded’ it must be unloaded and loaded again. During the unload/load process
some data can be missed and gaps will be created. In the future we hope to remedy this but for now it is a limitation
of the dynamic sandbox.

4. Unload the filter using sbmgr.

sbmgr -action=unload -config=PlatformDevs.toml -filtername=Example

2.13.6 SandboxDecoder

The SandboxDecoder provides an isolated execution environment for data parsing and complex transformations with-
out the need to recompile Heka. See Sandbox. Config:

• config_common_sandbox_parameters

Example

[sql_decoder]
type = "SandboxDecoder"
filename = "sql_decoder.lua"

2.13.7 Available Sandbox Decoders

Apache Access Log Decoder

Parses the Apache access logs based on the Apache ‘LogFormat’ configuration directive. The Apache format specifiers
are mapped onto the Nginx variable names where applicable e.g. %a -> remote_addr. This allows generic web filters
and outputs to work with any HTTP server input.

Config:

• log_format (string) The ‘LogFormat’ configuration directive from the apache2.conf. %t variables are con-
verted to the number of nanosecond since the Unix epoch and used to set the Timestamp on the message.
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html

• type (string, optional, default nil): Sets the message ‘Type’ header to the specified value

• user_agent_transform (bool, optional, default false) Transform the http_user_agent into
user_agent_browser, user_agent_version, user_agent_os.

• user_agent_keep (bool, optional, default false) Always preserve the http_user_agent value if transform is en-
abled.

• user_agent_conditional (bool, optional, default false) Only preserve the http_user_agent value if transform
is enabled and fails.

• payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

100 Chapter 2. hekad Command Line Options

http://localhost:4352/heka_report.html
http://localhost:4352
http://localhost:4352/heka_sandbox_termination.html
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html

Heka Documentation, Release 0.7.3

[TestWebserver]
type = "LogstreamerInput"
log_directory = "/var/log/apache"
file_match = ’access\.log’
decoder = "CombinedLogDecoder"

[CombinedLogDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/apache_access.lua"

[CombinedLogDecoder.config]
type = "combined"
user_agent_transform = true
combined log format
log_format = ’%h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"’

common log format
log_format = ’%h %l %u %t \"%r\" %>s %O’

vhost_combined log format
log_format = ’%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"’

referer log format
log_format = ’%{Referer}i -> %U’

Example Heka Message

Timestamp 2014-01-10 07:04:56 -0800 PST

Type combined

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5

Logger TestWebserver

Payload

EnvVersion

Severity 7

Fields

name:”remote_user” value_string:”-“
name:”http_x_forwarded_for” value_string:”-“
name:”http_referer” value_string:”-“
name:”body_bytes_sent” value_type:DOUBLE representation:”B” value_double:82
name:”remote_addr” value_string:”62.195.113.219” representation:”ipv4”
name:”status” value_type:DOUBLE value_double:200
name:”request” value_string:”GET /v1/recovery_email/status HTTP/1.1”
name:”user_agent_os” value_string:”FirefoxOS”
name:”user_agent_browser” value_string:”Firefox”
name:”user_agent_version” value_type:DOUBLE value_double:29

2.13. Sandbox 101

Heka Documentation, Release 0.7.3

MySQL Slow Query Log Decoder

Parses and transforms the MySQL slow query logs. Use mariadb_slow_query.lua to parse the MariaDB variant of the
MySQL slow query logs.

Config:

• truncate_sql (int, optional, default nil) Truncates the SQL payload to the specified number of bytes (not UTF-
8 aware) and appends ”...”. If the value is nil no truncation is performed. A negative value will truncate
the specified number of bytes from the end.

Example Heka Configuration

[Sync-1_5-SlowQuery]
type = "LogstreamerInput"
log_directory = "/var/log/mysql"
file_match = ’mysql-slow\.log’
parser_type = "regexp"
delimiter = "\n(# User@Host:)"
delimiter_location = "start"
decoder = "MySqlSlowQueryDecoder"

[MySqlSlowQueryDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/mysql_slow_query.lua"

[MySqlSlowQueryDecoder.config]
truncate_sql = 64

Example Heka Message

Timestamp 2014-05-07 15:51:28 -0700 PDT

Type mysql.slow-query

Hostname 127.0.0.1

Pid 0

UUID 5324dd93-47df-485b-a88e-429f0fcd57d6

Logger Sync-1_5-SlowQuery

Payload /* [queryName=FIND_ITEMS] */ SELECT bso.userid, bso.collection, ...

EnvVersion

Severity 7

Fields

name:”Rows_examined” value_type:DOUBLE value_double:16458
name:”Query_time” value_type:DOUBLE representation:”s” value_double:7.24966
name:”Rows_sent” value_type:DOUBLE value_double:5001
name:”Lock_time” value_type:DOUBLE representation:”s” value_double:0.047038

Nginx Access Log Decoder

Parses the Nginx access logs based on the Nginx ‘log_format’ configuration directive.

Config:

102 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

• log_format (string) The ‘log_format’ configuration directive from the nginx.conf. $time_local or
$time_iso8601 variable is converted to the number of nanosecond since the Unix epoch and used to set the
Timestamp on the message. http://nginx.org/en/docs/http/ngx_http_log_module.html

• type (string, optional, default nil): Sets the message ‘Type’ header to the specified value

• user_agent_transform (bool, optional, default false) Transform the http_user_agent into
user_agent_browser, user_agent_version, user_agent_os.

• user_agent_keep (bool, optional, default false) Always preserve the http_user_agent value if transform is en-
abled.

• user_agent_conditional (bool, optional, default false) Only preserve the http_user_agent value if transform
is enabled and fails.

• payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[TestWebserver]
type = "LogstreamerInput"
log_directory = "/var/log/nginx"
file_match = ’access\.log’
decoder = "CombinedLogDecoder"

[CombinedLogDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/nginx_access.lua"

[CombinedLogDecoder.config]
type = "combined"
user_agent_transform = true
combined log format
log_format = ’$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent"’

Example Heka Message

Timestamp 2014-01-10 07:04:56 -0800 PST

Type combined

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5

Logger TestWebserver

Payload

EnvVersion

Severity 7

Fields

name:”remote_user” value_string:”-“
name:”http_x_forwarded_for” value_string:”-“
name:”http_referer” value_string:”-“
name:”body_bytes_sent” value_type:DOUBLE representation:”B” value_double:82
name:”remote_addr” value_string:”62.195.113.219” representation:”ipv4”
name:”status” value_type:DOUBLE value_double:200

2.13. Sandbox 103

http://nginx.org/en/docs/http/ngx_http_log_module.html

Heka Documentation, Release 0.7.3

name:”request” value_string:”GET /v1/recovery_email/status HTTP/1.1”
name:”user_agent_os” value_string:”FirefoxOS”
name:”user_agent_browser” value_string:”Firefox”
name:”user_agent_version” value_type:DOUBLE value_double:29

Nginx Error Log Decoder

Parses the Nginx error logs based on the Nginx hard coded internal format.

Config:

• tz (string, optional, defaults to UTC) The conversion actually happens on the Go side since there isn’t good
TZ support here.

Example Heka Configuration

[TestWebserverError]
type = "LogstreamerInput"
log_directory = "/var/log/nginx"
file_match = ’error\.log’
decoder = "NginxErrorDecoder"

[NginxErrorDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/nginx_error.lua"

[NginxErrorDecoder.config]
tz = "America/Los_Angeles"

Example Heka Message

Timestamp 2014-01-10 07:04:56 -0800 PST

Type nginx.error

Hostname trink-x230

Pid 16842

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5

Logger TestWebserverError

Payload using inherited sockets from “6;”

EnvVersion

Severity 5

Fields

name:”tid” value_type:DOUBLE value_double:0
name:”connection” value_type:DOUBLE value_double:8878

Rsyslog Decoder

Parses the rsyslog output using the string based configuration template.

Config:

• template (string) The ‘template’ configuration string from rsyslog.conf. http://rsyslog-5-8-6-
doc.neocities.org/rsyslog_conf_templates.html

104 Chapter 2. hekad Command Line Options

http://rsyslog-5-8-6-doc.neocities.org/rsyslog_conf_templates.html
http://rsyslog-5-8-6-doc.neocities.org/rsyslog_conf_templates.html

Heka Documentation, Release 0.7.3

• tz (string, optional, defaults to UTC) If your rsyslog timestamp field in the template does not carry zone offset
information, you may set an offset to be applied to your events here. Typically this would be used with the
“Traditional” rsyslog formats.

Parsing is done by Go, supports values of “UTC”, “Local”, or a location name corresponding to a file in
the IANA Time Zone database, e.g. “America/New_York”.

Example Heka Configuration

[RsyslogDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/rsyslog.lua"

[RsyslogDecoder.config]
type = "RSYSLOG_TraditionalFileFormat"
template = ’%TIMESTAMP% %HOSTNAME% %syslogtag%%msg:::sp-if-no-1st-sp%%msg:::drop-last-lf%\n’
tz = "America/Los_Angeles"

Example Heka Message

Timestamp 2014-02-10 12:58:58 -0800 PST

Type RSYSLOG_TraditionalFileFormat

Hostname trink-x230

Pid 0

UUID e0eef205-0b64-41e8-a307-5772b05e16c1

Logger RsyslogInput

Payload “imklog 5.8.6, log source = /proc/kmsg started.”

EnvVersion

Severity 7

Fields

name:”programname” value_string:”kernel”

2.13.8 Available Sandbox Modules

Alert Module

API

Stores the last alert time in the global _LAST_ALERT so alert throttling will persist between restarts.

queue(ns, msg) Queue an alert message to be sent.

Arguments

• ns (int64) current time in nanoseconds since the UNIX epoch.

• msg (string) alert payload.

Return

• true if the message is queued, false if it would be throttled.

send(ns, msg) Send an alert message.

Arguments

2.13. Sandbox 105

http://golang.org/pkg/time/#LoadLocation

Heka Documentation, Release 0.7.3

• ns (int64) current time in nanoseconds since the UNIX epoch.

• msg (string) alert payload.

Return

• true if the message is sent, false if it is throttled.

send_queue(ns) Sends all queued alert message as a single message.

Arguments

• ns (int64) current time in nanoseconds since the UNIX epoch.

Return

• true if the queued messages are sent, false if they are throttled.

set_throttle(ns_duration) Sets the minimum duration between alert event outputs.

Arguments

• ns_duration (int64) minimum duration in nanoseconds between alerts.

Return

• none

throttled(ns) Test to see if sending an alert at this time would be throttled.

Arguments

• ns (int64) current time in nanoseconds since the UNIX epoch.

Return

• true if a message would be throttled, false if it would be sent.

Note: Use a zero timestamp to override message throttling.

Annotation Module

API

add(name, ns, col, stext, text) Create an annotation in the global _ANNOTATIONS table.

Arguments

• name (string) circular buffer payload name.

• ns (int64) current time in nanoseconds since the UNIX epoch.

• col (uint) circular buffer column to annotate.

• stext (string) short text to display on the graph.

• text (string) long text to display in the rollover.

Return

• none

create(ns, col, stext, text) Helper function to create an annotation table but not add it to the global list of annotations.

Arguments

• ns (int64) current time in nanoseconds since the UNIX epoch.

106 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

• col (uint) circular buffer column to annotate.

• stext (string) short text to display on the graph.

• text (string) long text to display in the rollover.

Return

• annotation table

concat(name, annotations) Concatenates an array of annotation tables to the specified key in the global _ANNOTA-
TIONS table.

Arguments

• name (string) circular buffer payload name.

• annotations (array) annotation tables.

Return

• none

prune(name, ns)

Arguments

• name (string) circular buffer payload name.

• ns (int64) current time in nanoseconds since the UNIX epoch.

Return

• The json encoded list of annotations.

remove(name) Entirely remove the payload name from the global _ANNOTATIONS table.

Arguments

• name (string) circular buffer payload name.

Return

• none

set_prune(name, ns_duration)

Arguments

• name (string) circular buffer payload name.

• ns_duration (int64) time in nanoseconds the annotation should remain in the list.

Return

• none

Anomaly Detection Module

API

parse_config(anomaly_config) Parses the anomaly_config into a Lua table. If the configuration is invalid an error is
thrown.

Arguments

• anomaly_config (string or nil)

2.13. Sandbox 107

Heka Documentation, Release 0.7.3

The configuration can specify any number of algorithm function calls (space delimited if desired, but they
will also work back to back with no delimiter). This allows for analysis of multiple graphs, columns, and
even specification of multiple algorithms per column.

Rate of change test

Only use this test on data with a normal (Gaussian http://en.wikipedia.org/wiki/Normal_distribution) dis-
tribution. It identifies rapid changes (spikes) in the data (increasing and decreasing) but ignores cyclic data
that has a more gradual rise and fall. It is typically used for something like HTTP 200 status code analysis
to detect a sudden increase/decrease in web traffic.

roc(“payload_name”, col, win, hwin, sd, loss_of_data, start_of_data)

• payload_name (string) Quoted string containing the payload_name value used in the in-
ject_payload function call. If the payload name contains a double quote it should be escaped
as two double quotes in a row.

• col (uint) The circular buffer column to perform the analysis on.

• win (uint) The number of intervals in an analysis window.

• hwin (uint) The number of intervals in the historical analysis window (0 uses the full history).
Must be greater than or equal to ‘win’.

• sd (double) The standard deviation threshold to trigger the anomaly.

• loss_of_data (bool) Alert if data stops.

• start_of_data (bool) Alert if data starts.

e.g. roc(“Output1”, 1, 15, 0, 2, true, false)

Mann-Whitney-Wilcoxon test http://en.wikipedia.org/wiki/Mann-Whitney

Parametric

Only use this test on data with a normal (Gaussian http://en.wikipedia.org/wiki/Normal_distribution) dis-
tribution. It identifies more gradual changes in the data (increasing, decreasing, or any). It is typically
used with something like server memory analysis where the values are more stable and gradual changes
are interesting (e.g., memory leak).

mww(“payload_name”, col, win, nwin, pvalue, trend)

• payload_name (string) Quoted string containing the payload_name value used in the in-
ject_payload function call. If the payload name contains a double quote it should be escaped
as two double quotes in a row.

• col (uint) The circular buffer column to perform the analysis on.

• win (uint) The number of intervals in an analysis window (should be at least 20).

• nwin (uint) The number of analysis windows to compare.

• pvalue (double) The pvalue threshold to trigger the prediction.
http://en.wikipedia.org/wiki/P_value

• trend (string) (decreasing|increasing|any)

e.g. mww(“Output1”, 2, 60, 10, 0.0001, decreasing)

Non-parametric

This test can be used on data with a normal (Gaussian http://en.wikipedia.org/wiki/Normal_distribution) or
non-normal (nonparametric http://en.wikipedia.org/wiki/Nonparametric_statistics) distribution. It identi-
fies overlap/similarities between two data sets. It is typically used for something like detecting an increase
in HTTP 500 status code errors.

108 Chapter 2. hekad Command Line Options

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Mann-Whitney
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/P_value
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Nonparametric_statistics

Heka Documentation, Release 0.7.3

mww_nonparametric(“payload_name”, col, win, nwin, pstat)

• payload_name (string) Quoted string containing the payload_name value used in the in-
ject_payload function call. If the payload name contains a double quote it should be escaped
as two double quotes in a row.

• col (uint) The circular buffer column to perform the analysis on.

• win (uint) The number of intervals in an analysis window.

• nwin (uint) The number of analysis windows to compare.

• pstat (double) Value between 0 and 1. Anything above 0.5 is an increasing trend anything below
0.5 is a decreasing trend. http://en.wikipedia.org/wiki/Mann-Whitney#.CF.81_statistic

e.g. mww_nonparametric(“Output1”, 2, 15, 10, 0.55)

Return Configuration table if parsing was successful or nil, if nil was passed in.

detect(ns, name, cbuf, anomaly_config) Detects anomalies in the circular buffer data returning any error messages
for alert generation and array of annotations for the graph.

Arguments

• ns (int64) current time in nanoseconds since the UNIX epoch. It used to advance the circular buffer
if necessary (i.e., if no data is being received). The anomaly detection is always performed on the
newest data (ignoring the current interval since it is incomplete).

• name (string) circular buffer payload name

• cbuf (userdata) circular buffer

• anomaly_config (table) returned from the parse() method

Return

• string if an anomaly was detected, otherwise nil.

• array of annotation tables

ElasticSearch Module

API

bulkapi_index_json(index, type_name, id, ns)

Returns a simple JSON ‘index’ structure satisfying the ElasticSearch BulkAPI

Arguments

• index (string or nil) String to use as the _index key’s value in the generated JSON, or nil to
omit the key. Supports field interpolation as described below.

• type_name (string or nil) String to use as the _type key’s value in the generated JSON, or nil
to omit the key. Supports field interpolation as described below.

• id (string or nil) String to use as the _id key’ value in the generated JSON, or nil to omit the
key. Supports field interpolation as described below.

• ns (number or nil) Nanosecond timestamp to use for any strftime field interpolation into the
above fields. Current system time will be used if nil.

Field interpolation

2.13. Sandbox 109

http://en.wikipedia.org/wiki/Mann-Whitney#.CF.81_statistic
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html

Heka Documentation, Release 0.7.3

Data from the current message can be interpolated into any of the string arguments listed above.
A %{} enclosed field name will be replaced by the field value from the current message. Sup-
ported default field names are “Type”, “Hostname”, “Pid”, “UUID”, “Logger”, “EnvVersion”,
and “Severity”. Any other values will be checked against the defined dynamic message fields.
If no field matches, then a C strftime (on non-Windows platforms) or C89 strftime (on Win-
dows) time substitution will be attempted, using the nanosecond timestamp (if provided) or the
system clock (if not).

Return

• JSON string suitable for use as ElasticSearch BulkAPI index directive.

2.13.9 Lua Parsing Expression Grammars (LPeg)

Best practices (using Lpeg in the sandbox)

1. Read the LPeg reference

2. There are no plans to include the ‘re’ module so embrace the SNOBOL tradition. Why?

• Consistency and readability of a single syntax.

• Promotes more modular grammars.

• Is easier to comment.

3. Do not use parentheses around function calls that take a single string argument.

-- prefer
lpeg.P"Literal"

-- instead of
lpeg.P("Literal")

4. When writing sub-grammars with an ordered choice (+) place each choice on its own line; this make it easier to
pick out the alternates. Also, if possible order them from most frequent to least frequent use.

local date_month = lpeg.P"0" * lpeg.R"19"
+ "1" * lpeg.R"02"

-- The exception: when grouping alternates together in a higher level grammar.

local log_grammar = (rfc3339 + iso8601) * log_severity * log_message

5. Use the locale patterns when matching standard character classes.

-- prefer
lpeg.digit

-- instead of
lpeg.R"09".

6. If a literal occurs within an expression avoid wrapping it in a function.

-- prefer
lpeg.digit * "Test"

-- instead of
lpeg.digit * lpeg.P"Test"

110 Chapter 2. hekad Command Line Options

http://man7.org/linux/man-pages/man3/strftime.3.html
http://msdn.microsoft.com/en-us/library/fe06s4ak.aspx
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html

Heka Documentation, Release 0.7.3

7. When creating a parser from an RFC standard mirror the ABNF grammar that is provided.

8. If creating a grammar that would also be useful to others, please consider contributing it back to the project,
thanks.

9. Use the grammar tester http://lpeg.trink.com.

2.13.10 SandboxFilter

The sandbox filter provides an isolated execution environment for data analysis. Any output generated by the sandbox
is injected into the payload of a new message for further processing or to be output.

Config:

• Common Filter Parameters

• config_common_sandbox_parameters

Example:

[hekabench_counter]
type = "SandboxFilter"
message_matcher = "Type == ’hekabench’"
ticker_interval = 1
filename = "counter.lua"
preserve_data = true
profile = false

[hekabench_counter.config]
rows = 1440
sec_per_row = 60

2.13.11 Available Sandbox Filters

Circular Buffer Delta Aggregator

Collects the circular buffer delta output from multiple instances of an upstream sandbox filter (the filters should all be
the same version at least with respect to their cbuf output). The purpose is to recreate the view at a larger scope in each
level of the aggregation i.e., host view -> datacenter view -> service level view.

Config:

• enable_delta (bool, optional, default false) Specifies whether or not this aggregator should generate cbuf
deltas.

• anomaly_config(string) - (see sandbox_anomaly_module) A list of anomaly detection specifications. If not
specified no anomaly detection/alerting will be performed.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configura-
tion, then this value should be incremented every time the enable_delta configuration is changed to prevent
the plugin from failing to start during data restoration.

Example Heka Configuration

[TelemetryServerMetricsAggregator]
type = "SandboxFilter"
message_matcher = "Logger == ’TelemetryServerMetrics’ && Fields[payload_type] == ’cbufd’"
ticker_interval = 60
filename = "lua_filters/cbufd_aggregator.lua"

2.13. Sandbox 111

http://lpeg.trink.com

Heka Documentation, Release 0.7.3

preserve_data = true

[TelemetryServerMetricsAggregator.config]
enable_delta = false
anomaly_config = ’roc("Request Statistics", 1, 15, 0, 1.5, true, false)’
preservation_version = 0

Circular Buffer Delta Aggregator (by hostname)

Collects the circular buffer delta output from multiple instances of an upstream sandbox filter (the filters should all be
the same version at least with respect to their cbuf output). Each column from the source circular buffer will become
its own graph. i.e., ‘Error Count’ will become a graph with each host being represented in a column.

Config:

• max_hosts (uint) Pre-allocates the number of host columns in the graph(s). If the number of active hosts
exceed this value, the plugin will terminate.

• rows (uint) The number of rows to keep from the original circular buffer. Storing all the data from all the hosts
is not practical since you will most likely run into memory and output size restrictions (adjust the view
down as necessary).

• host_expiration (uint, optional, default 120 seconds) The amount of time a host has to be inactive before it
can be replaced by a new host.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the max_hosts or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[TelemetryServerMetricsHostAggregator]
type = "SandboxFilter"
message_matcher = "Logger == ’TelemetryServerMetrics’ && Fields[payload_type] == ’cbufd’"
ticker_interval = 60
filename = "lua_filters/cbufd_host_aggregator.lua"
preserve_data = true

[TelemetryServerMetricsHostAggregator.config]
max_hosts = 5
rows = 60
host_expiration = 120
preservation_version = 0

Frequent Items

Calculates the most frequent items in a data stream.

Config:

• message_variable (string) The message variable name containing the items to be counted.

• max_items (uint, optional, default 1000) The maximum size of the sample set (higher will produce a more
accurate list).

• min_output_weight (uint, optional, default 100) Used to reduce the long tail output by only outputting the
higher frequency items.

112 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

• reset_days (uint, optional, default 1) Resets the list after the specified number of days (on the UTC day
boundary). A value of 0 will never reset the list.

Example Heka Configuration

[FxaAuthServerFrequentIP]
type = "SandboxFilter"
filename = "lua_filters/frequent_items.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Logger == ’nginx.access’ && Type == ’fxa-auth-server’"

[FxaAuthServerFrequentIP.config]
message_variable = "Fields[remote_addr]"
max_items = 10000
min_output_weight = 100
reset_days = 1

Heka Memory Statistics (self monitoring)

Graphs the Heka memory statistics using the heka.memstat message generated by pipeline/report.go.

Config:

• rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

• sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

• anomaly_config (string, optional) See sandbox_anomaly_module.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the rows or sec_per_row configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[HekaMemstat]
type = "SandboxFilter"
filename = "lua_filters/heka_memstat.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Type == ’heka.memstat’"

Heka Message Schema (Message Documentation)

Generates documentation for each unique message in a data stream. The output is a hierarchy of Logger, Type,
EnvVersion, and a list of associated message field attributes including their counts (number in the brackets). This
plugin is meant for data discovery/exploration and should not be left running on a production system.

Config:

<none>

Example Heka Configuration

2.13. Sandbox 113

Heka Documentation, Release 0.7.3

[SyncMessageSchema]
type = "SandboxFilter"
filename = "lua_filters/heka_message_schema.lua"
ticker_interval = 60
preserve_data = false
message_matcher = "Logger =~ /^Sync/"

Example Output

Sync-1_5-Webserver [54600]
slf [54600]

-no version- [54600]
upstream_response_time (mismatch)
http_user_agent (string)
body_bytes_sent (number)
remote_addr (string)
request (string)
upstream_status (mismatch)
status (number)
request_time (number)
request_length (number)

Sync-1_5-SlowQuery [37]
mysql.slow-query [37]

-no version- [37]
Query_time (number)
Rows_examined (number)
Rows_sent (number)
Lock_time (number)

Heka Process Message Failures (self monitoring)

Monitors Heka’s process message failures by plugin.

Config:

• anomaly_config(string) - (see sandbox_anomaly_module) A list of anomaly detection specifications. If not
specified a default of ‘mww_nonparametric(“DEFAULT”, 1, 5, 10, 0.7)’ is used. The “DEFAULT” settings
are applied to any plugin without an explict specification.

Example Heka Configuration

[HekaProcessMessageFailures]
type = "SandboxFilter"
filename = "lua_filters/heka_process_message_failures.lua"
ticker_interval = 60
preserve_data = false # the counts are reset on Heka restarts and the monitoring should be too.
message_matcher = "Type == ’heka.all-report’"

HTTP Status Graph

Graphs HTTP status codes using the numeric Fields[status] variable collected from web server access logs.

114 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

Config:

• sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

• rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

• anomaly_config (string, optional) See sandbox_anomaly_module.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the sec_per_row or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[FxaAuthServerHTTPStatus]
type = "SandboxFilter"
filename = "lua_filters/http_status.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Logger == ’nginx.access’ && Type == ’fxa-auth-server’"

[FxaAuthServerHTTPStatus.config]
sec_per_row = 60
rows = 1440
anomaly_config = ’roc("HTTP Status", 2, 15, 0, 1.5, true, false) roc("HTTP Status", 4, 15, 0, 1.5, true, false) mww_nonparametric("HTTP Status", 5, 15, 10, 0.8)’
preservation_version = 0

Stats Graph

Converts stat values extracted from statmetric messages (see StatAccumInput) to circular buffer data and periodically
emits messages containing this data to be graphed by a DashboardOutput. Note that this filter expects the stats data
to be available in the message fields, so the StatAccumInput must be configured with emit_in_fields set to true for this
filter to work correctly.

Config:

• title (string, optional, default “Stats”): Title for the graph output generated by this filter.

• rows (uint, optional, default 300): The number of rows to store in our circular buffer. Each row represents
one time interval.

• sec_per_row (uint, optional, default 1): The number of seconds in each circular buffer time interval.

• stats (string): Space separated list of stat names. Each specified stat will be expected to be found in the fields of
the received statmetric messages, and will be extracted and inserted into its own column in the accumulated
circular buffer.

• stat_labels (string): Space separated list of header label names to use for the extracted stats. Must be in the
same order as the specified stats. Any label longer than 15 characters will be truncated.

• anomaly_config (string, optional): Anomaly detection configuration, see sandbox_anomaly_module.

• preservation_version (uint, optional, default 0): If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time any edits are made to your rows, sec_per_row,
stats, or stat_labels values, or else Heka will fail to start because the preserved data will no longer match
the filter’s data structure.

Example Heka Configuration

2.13. Sandbox 115

Heka Documentation, Release 0.7.3

[stat-graph]
type = "SandboxFilter"
filename = "lua_filters/stat_graph.lua"
ticker_interval = 10
preserve_data = true
message_matcher = "Type == ’heka.statmetric’"

[stat-graph.config]
title = "Hits and Misses"
rows = 1440
sec_per_row = 10
stats = "stats.counters.hits.count stats.counters.misses.count"
stat_labels = "hits misses"
anomaly_config = ’roc("Hits and Misses", 1, 15, 0, 1.5, true, false) roc("Hits and Misses", 2, 15, 0, 1.5, true, false)’
preservation_version = 0

Unique Items

Counts the number of unique items per day e.g. active daily users by uid.

Config:

• message_variable (string, required) The Heka message variable containing the item to be counted.

• title (string, optional, default “Estimated Unique Daily message_variable”) The graph title for the cbuf out-
put.

• enable_delta (bool, optional, default false) Specifies whether or not this plugin should generate cbuf deltas.
Deltas should be enabled when sharding is used; see: Circular Buffer Delta Aggregator.

• preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configura-
tion, then this value should be incremented every time the enable_delta configuration is changed to prevent
the plugin from failing to start during data restoration.

Example Heka Configuration

[FxaActiveDailyUsers]
type = "SandboxFilter"
filename = "lua_filters/unique_items.lua"
ticker_interval = 60
preserve_data = true
message_matcher = "Logger == ’FxaAuth’ && Type == ’request.summary’ && Fields[path] == ’/v1/certificate/sign’ && Fields[errno] == 0"

[FxaActiveDailyUsers.config]
message_variable = "Fields[uid]"
title = "Estimated Active Daily Users"
preservation_version = 0

2.13.12 SandboxEncoder

The SandboxEncoder provides an isolated execution environment for converting messages into binary data without
the need to recompile Heka. See Sandbox. Config:

• config_common_sandbox_parameters

Example

116 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

[custom_json_encoder]
type = "SandboxEncoder"
filename = "path/to/custom_json_encoder.lua"

[custom_json_encoder.config]
msg_fields = ["field1", "field2"]

2.13.13 Available Sandbox Encoders

Alert Encoder

Produces more human readable alert messages.

Config:

<none>

Example Heka Configuration

[FxaAlert]
type = "SmtpOutput"
message_matcher = "((Type == ’heka.sandbox-output’ && Fields[payload_type] == ’alert’) || Type == ’heka.sandbox-terminated’) && Logger =~ /^Fxa/"
send_from = "heka@example.com"
send_to = ["alert@example.com"]
auth = "Plain"
user = "test"
password = "testpw"
host = "localhost:25"
encoder = "AlertEncoder"

[AlertEncoder]
type = "SandboxEncoder"
filename = "lua_encoders/alert.lua"

Example Output

Timestamp 2014-05-14T14:20:18Z

Hostname ip-10-226-204-51

Plugin FxaBrowserIdHTTPStatus

Alert HTTP Status - algorithm: roc col: 1 msg: detected anomaly, standard deviation exceeds 1.5

ESPayloadEncoder

Prepends ElasticSearch BulkAPI index JSON to a message payload.

Config:

• index (string, optional, default “heka-%{%Y.%m.%d}”) String to use as the _index key’s value in the gen-
erated JSON. Supports field interpolation as described below.

• type_name (string, optional, default “message”) String to use as the _type key’s value in the generated JSON.
Supports field interpolation as described below.

• id (string, optional) String to use as the _id key’s value in the generated JSON. Supports field interpolation as
described below.

2.13. Sandbox 117

Heka Documentation, Release 0.7.3

• es_index_from_timestamp (boolean, optional) If true, then any time interpolation (often used to generate the
ElasticSeach index) will use the timestamp from the processed message rather than the system time.

Field interpolation:

Data from the current message can be interpolated into any of the string arguments listed above. A %{}
enclosed field name will be replaced by the field value from the current message. Supported default field
names are “Type”, “Hostname”, “Pid”, “UUID”, “Logger”, “EnvVersion”, and “Severity”. Any other
values will be checked against the defined dynamic message fields. If no field matches, then a C strftime
(on non-Windows platforms) or C89 strftime (on Windows) time substitution will be attempted.

Example Heka Configuration

[es_payload]
type = "SandboxEncoder"
filename = "lua_encoders/es_payload.lua"

[es_payload.config]
es_index_from_timestamp = true
index = "%{Logger}-%{%Y.%m.%d}"
type_name = "%{Type}-%{Hostname}"

[ElasticSearchOutput]
message_matcher = "Type == ’mytype’"
encoder = "es_payload"

Example Output

{"index":{"_index":"mylogger-2014.06.05","_type":"mytype-host.domain.com"}}
{"json":"data","extracted":"from","message":"payload"}

2.13.14 Sandbox Development

Decoders

Since decoders cannot be dynamically loaded and they stop Heka processing on fatal errors they must be developed
outside of a production enviroment. Most Lua decoders are LPeg based as it is the best way to parse and transform
data within the sandbox. The other alternatives are the built-in Lua pattern matcher or the JSON parser with a manual
transformation.

1. Procure some sample data to be used as test input.

timestamp=time_t key1=data1 key2=data2

2. Configure a simple LogstreamerInput to deliver the data to your decoder.

[LogstreamerInput]
log_directory = "."
file_match = ’data\.log’
decoder = "SandboxDecoder"

3. Configure your test decoder.

[SandboxDecoder]
filename = "decoder.lua"

4. Configure the DasboardOutput for visibility into the decoder (performance, memory usage, messages pro-
cessed/failed, etc.)

118 Chapter 2. hekad Command Line Options

http://man7.org/linux/man-pages/man3/strftime.3.html
http://msdn.microsoft.com/en-us/library/fe06s4ak.aspx

Heka Documentation, Release 0.7.3

[DashboardOutput]
address = "127.0.0.1:4352"
ticker_interval = 10
working_directory = "dashboard"
static_directory = "/usr/share/heka/dasher"

5. Configure a LogOutput to display the generated messages.

[LogOutput]
message_matcher = "TRUE"

6. Build the decoder. The decoder will receive a message from an input plugin. The input may have set some
additional message headers but the ‘Payload’ header contains the data for the decoder. The decoder
can access the payload using read_message(“Payload”). The payload can be used to construct an en-
tirely new message, multiple messages or modify any part of the existing message (see inject_message,
write_message in the lua API). Message headers not modified by the decoder are left intact and in the case
of multiple message injections the initial message header values are duplicated for each message.

(a) LPeg grammar. Incrementally build and test your grammar using http://lpeg.trink.com.

(b) Lua pattern matcher. Test match expressions using http://www.lua.org/cgi-bin/demo.

(c) JSON parser. For data transformation use the LPeg/Lua matcher links above. Something like simple
field remapping i.e. msg.Hostname = json.host can be verified in the LogOutput.

7. Run Heka with the test configuration.

8. Inspect/verify the messages written by LogOutput.

Filters

Since filters can be dynamically loaded it is recommended you develop them in production with live data.

1. Read sandbox_manager_tutorial

OR

1. If you are developing the filter in conjunction with the decoder you can add it to the test configuration.

[SandboxFilter]
filename = "filter.lua"

2. Debugging

(a) Watch for a dashboard sandbox termination report. The termination message provides the line number and
cause of the failure. These are usually straight forward to correct and commonly caused by a syntax error
in the script or invalid assumptions about the data (e.g. cnt = cnt + read_message(“Fields[counter]”) will
fail if the counter field doesn’t exist or is non-numeric due to a error in the data).

(b) No termination report and the output does not match expectations. These are usually a little harder to
debug.

i. Check the Heka dasboard to make sure the router is sending messages to the plugin. If not,
verify your message_matcher configuration.

ii. Visually review the the plugin for errors. Are the message field names correct, was the
result of the cjson.decode tested, are the output variables actually being assigned to and
output/injected, etc.

iii. Add a debug output message with the pertinent information.

2.13. Sandbox 119

http://lpeg.trink.com
http://www.lua.org/cgi-bin/demo

Heka Documentation, Release 0.7.3

require "string"
require "table"
local dbg = {}

-- table.insert(dbg, string.format("Entering function x arg1: %s", arg1))
-- table.insert(dbg, "Exiting function x")

inject_payload("txt", "debug", table.concat(dbg, "\n"))

i. LAST RESORT: Move the filter out of production, turn on preservation, run the tests, stop
Heka, and review the entire preserved state of the filter.

2.13.15 Lua Sandbox Cookbooks

• Decoders

– json_payload_transform

• Presentation

– graph_annotation

2.14 Testing Heka

2.14.1 heka-flood

heka-flood is a Heka load test tool; it is capable of generating a large number of messages to exercise Heka using
different protocols, message types, and error conditions.

Command Line Options

• -config=”flood.toml”: Path to heka-flood config file

• -test=”default”: Name of config file defined test to run

Example:

heka-flood -config="/etc/flood.toml" -test="my_test_name"

Configuration Variables

• test (object): Name of the test section (toml key) in the configuration file.

• ip_address (string): IP address of the Heka server.

• sender (string): tcp or udp

• pprof_file (string): The name of the file to save the profiling data to.

• encoder (string): protobuf or json

• num_messages (int): The number of messages to be sent, 0 for infinite.

• corrupt_percentage (float): The percentage of messages that will be randomly corrupted.

• signed_percentage (float): The percentage of message that will signed.

120 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.7.3

• variable_size_messages (bool): True, if a random selection of variable size messages are to be sent. False, if a
single fixed message will be sent.

• signer (object): Signer information for the encoder.

– name (string): The name of the signer.

– hmac_hash (string): md5 or sha1

– hmac_key (string): The key the message will be signed with.

– version (int): The version number of the hmac_key.

• ascii_only (bool): True, if generated message payloads should only contain ASCII characters. False, if message
payloads should contain arbitrary binary data. Defaults to false.

New in version 0.5.

• use_tls (bool): Specifies whether or not SSL/TLS encryption should be used for the TCP connections. Defaults
to false.

• tls (TlsConfig): A sub-section that specifies the settings to be used for any SSL/TLS encryption. This will only
have any impact if use_tls is set to true. See Configuring TLS.

Example

[default]
ip_address = "127.0.0.1:5565"
sender = "tcp"
pprof_file = ""
encoder = "protobuf"
num_messages = 0
corrupt_percentage = 0.0001
signed_percentage = 0.00011
variable_size_messages = true
[default.signer]

name = "test"
hmac_hash = "md5"
hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
version = 0

2.14.2 heka-inject

New in version 0.5.

heka-inject is a Heka client allowing for the injecting of arbitrary messages into the Heka pipeline. It is capable of
generating a message of specified message variables with values. It allows for quickly testing plugins. Inject requires
TcpInput with Protobufs encoder availability.

Command Line Options

• -heka: Heka instance to connect

• -hostname: message hostname

• -logger: message logger

• -payload: message payload

• -pid: message pid

• -severity: message severity

2.14. Testing Heka 121

Heka Documentation, Release 0.7.3

• -type: message type

Example:

heka-inject -payload="Test message with high severity." -severity=1

2.14.3 heka-cat

New in version 0.5.

A command-line utility for counting, viewing, filtering, and extracting Heka protobuf logs.

Command Line Options

• -format=”txt”: output format [txt|json|heka|count]

• -match=”TRUE”: message_matcher filter expression

• -offset=0: starting offset for the input file in bytes

• -output=””: output filename, defaults to stdout

• -tail=false: don’t exit on EOF

• input filename

Example:

heka-cat -format=count -match="Fields[status] == 404" test.log

Output:

Input:test.log Offset:0 Match:Fields[status] == 404 Format:count Tail:false Output:
Processed: 1002646, matched: 15660 messages

2.15 Configuring TLS

Many input and output plugins that rely on TCP as the underlying transport for network communication also support
the use of SSL/TLS encryption for their connections. Typically the TOML configuration for these plugins will support
a boolean use_tls flag that specifies whether or not encryption should be used, and a tls sub-section that specifies the
settings to be used for negotiating the TLS connections. If use_tls is not set to true, the tls section will be ignored.

Modeled after Go’s stdlib TLS configuration struct, the same configuration structure is used for both client and server
connections, with some of the settings being applicable for a client’s configuration, some for a server’s, and some for
both. In the description of the TLS configuration settings below, each setting is marked as appropriate to client, server,
or both as appropriate.

2.15.1 TLS configuration settings

• server_name (string, client): Name of the server being requested. Included in the client handshake to support
virtual hosting server environments.

• cert_file (string, both): Full filesystem path to the certificate file to be presented to the other side of the con-
nection.

• key_file (string, both): Full filesystem path to the specified certificate’s associated private key file.

122 Chapter 2. hekad Command Line Options

http://golang.org/pkg/crypto/tls/#Config

Heka Documentation, Release 0.7.3

• client_auth (string, server): Specifies the server’s policy for TLS client authentication. Must be one of the
following values:

– NoClientCert

– RequestClientCert

– RequireAnyClientCert

– VerifyClientCertIfGiven

– RequireAndVerifyClientCert

Defaults to “NoClientCert”.

• ciphers ([]string, both): List of cipher suites supported for TLS connections. Earlier suites in the list have
priority over those following. Must only contain values from the following selection:

– RSA_WITH_RC4_128_SHA

– RSA_WITH_3DES_EDE_CBC_SHA

– RSA_WITH_AES_128_CBC_SHA

– RSA_WITH_AES_256_CBC_SHA

– ECDHE_ECDSA_WITH_RC4_128_SHA

– ECDHE_ECDSA_WITH_AES_128_CBC_SHA

– ECDHE_ECDSA_WITH_AES_256_CBC_SHA

– ECDHE_RSA_WITH_RC4_128_SHA

– ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

– ECDHE_RSA_WITH_AES_128_CBC_SHA

– ECDHE_RSA_WITH_AES_256_CBC_SHA

– ECDHE_RSA_WITH_AES_128_GCM_SHA256

– ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

If omitted, the implementation’s default ordering will be used.

• insecure_skip_verify (bool, client): If true, TLS client connections will accept any certificate presented by
the server and any host name in that certificate. This causes TLS to be susceptible to man-in-the-middle
attacks and should only be used for testing. Defaults to false.

• prefer_server_ciphers (bool, server): If true, a server will always favor the server’s specified cipher suite
priority order over that requested by the client. Defaults to true.

• session_tickets_disabled (bool, server): If true, session resumption support as specified in RFC 5077 will be
disabled.

• session_ticket_key (string, server): Used by the TLS server to provide session resumption per RFC 5077. If
left empty, it will be filled with random data before the first server handshake.

• min_version (string, both): Specifies the mininum acceptable SSL/TLS version. Must be one of the following
values:

– SSL30

– TLS10

– TLS11

– TLS12

2.15. Configuring TLS 123

http://golang.org/src/pkg/crypto/tls/cipher_suites.go#L69
http://tools.ietf.org/search/rfc5077
http://tools.ietf.org/search/rfc5077

Heka Documentation, Release 0.7.3

Defaults to SSL30.

• max_version (string, both): Specifies the maximum acceptable SSL/TLS version. Must be one of the follow-
ing values:

– SSL30

– TLS10

– TLS11

– TLS12

Defaults to TLS12.

• client_cafile (string, server): File for server to authenticate client TLS handshake. Any client certs recieved
by server must be chained to a CA found in this PEM file.

Has no effect when NoClientCert is set.

• root_cafile (string, client): File for client to authenticate server TLS handshake. Any server certs recieved by
client must be must be chained to a CA found in this PEM file.

2.15.2 Sample TLS configuration

The following is a sample TcpInput configuration showing the use of TLS encryption.

[TcpInput]
address = ":5565"
parser_type = "message.proto"
decoder = "ProtobufDecoder"
use_tls = true

[TcpInput.tls]
cert_file = "/usr/share/heka/tls/cert.pem"
key_file = "/usr/share/heka/tls/cert.key"
client_auth = "RequireAndVerifyClientCert"
prefer_server_ciphers = true
min_version = "TLS11"

124 Chapter 2. hekad Command Line Options

CHAPTER 3

Indices and tables

• search

• glossary

• changelog

125

	hekad
	hekad Command Line Options
	Installing
	Getting Started
	Configuring hekad
	Inputs
	Decoders
	Filters
	Encoders
	Outputs
	Monitoring Internal State
	Extending Heka
	Heka Message
	Message Matcher Syntax
	Sandbox
	Testing Heka
	Configuring TLS

	Indices and tables

