

 Navigation

 	
 index

 	
 next |

 	hekad 0.4.1 documentation

hekad

The hekad daemon is the core component of the heka project, which
handles routing messages, generating metrics, aggregating statsd-type
messages, running plugins on the messages, and sending messages to the
configured destinations.

See also

heka project [http://heka-docs.readthedocs.org]

Contents:

	Installing
	Binaries

	From Source

	Building hekad with External Plugins

	Creating Packages

	Configuring hekad
	Global configuration options

	Example hekad.toml file

	Common Roles

	Command Line Options

	Configuring Restarting Behavior

	Inputs

	Decoders

	Common Filter / Output Parameters

	Filters

	Outputs

	Monitoring Internal State

	Extending Heka
	Definitions

	Overview

	Plugin Configuration

	Restarting Plugins

	Custom Plugin Config Structs

	Inputs

	Decoders

	Filters

	Outputs

	Registering Your Plugin

	Message Matcher Syntax
	Examples

	Relational Operators

	Logical Operators

	Boolean

	Message Variables

	Quoted String

	Regular Expression String

	Sandbox
	Features

	Sandbox Decoder

	Sandbox Filter

	Sandbox Manager

	Tutorial - How to use the dynamic sandboxes

	Lua Sandbox

	Lua Circular Buffer Library

	Lua Sandbox Tutorial

	Testing Heka
	Flood

Indices and tables

	Search Page

	Glossary

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hekad 0.4.1 documentation

Installing

Binaries

hekad releases are available on the Github project releases page [https://github.com/mozilla-services/heka/releases].
Binaries are available for Linux and OSX, with packages for Debian and
RPM based distributions.

From Source

hekad requires a Go work environment to be setup for the binary to be
built; this task is automated by the build process. The build script will
override the Go environment for the shell window it is executed in. This creates
an isolated environment that is intended specifically for building and
developing Heka. The build script should be be run every time a new shell is
opened for Heka development to ensure the correct dependencies are found and
being used. To create a working hekad binary for your platform you’ll need to
install some prerequisites. Many of these are standard on modern Unix
distributions and all are available for installation on Windows systems.

Prerequisites (all systems):

	CMake 2.8.7 or greater http://www.cmake.org/cmake/resources/software.html

	Git http://git-scm.com/download

	Go 1.1 or greater (1.1.1 recommended) http://code.google.com/p/go/downloads/list

	Mercurial http://mercurial.selenic.com/downloads/

	Protobuf 2.3 or greater (optional - only needed if message.proto is modified) http://code.google.com/p/protobuf/downloads/list

	Sphinx (optional - used to generate the documentation) http://sphinx-doc.org/

Prerequisites (Unix):

	make

	gcc

	patch

	dpkg (optional)

	rpmbuild (optional)

	packagemaker (optional)

Prerequisites (Windows):

	MinGW http://sourceforge.net/projects/tdm-gcc/

Build Instructions

	Check out the `heka`_ repository:

git clone https://github.com/mozilla-services/heka

	Run build in the heka directory

cd heka
source build.sh # Unix (this file must be sourced to properly setup the environment)
build.bat # Windows

You will now have a hekad binary in the build/heka/bin directory.

	(Optional) Run the tests to ensure a functioning hekad.

ctest # All, see note
Or use the makefile target
make test # Unix
mingw32-make test # Windows

Note

In addition to the standard test build target, ctest can be called directly
providing much greater control over the tests being run and the generated
output (see ctest –help). i.e., ‘ctest -R pi’ will only run the pipeline
unit test.

Clean Targets

	clean-heka - Use this target any time you change branches or pull from the Heka repository, it will ensure the Go workspace is in sync with the repository tree.

	clean - You will never want to use this target (it is autogenerated by cmake), it will cause all external dependencies to be re-fetched and re-built. The best way to ‘clean-all’ is to delete the build directory and re-run the build.(sh|bat) script.

Build Options

There are two build customization options that can be specified during the cmake generation process.

	INCLUDE_MOZSVC (bool) Include the Mozilla services plugins (default Unix: true, Windows: false).

	BENCHMARK (bool) Enable the benchmark tests (default false)

For example: to enable the benchmark tests in addition to the standard unit tests
type ‘cmake -DBENCHMARK=true ..’ in the build directory.

Building hekad with External Plugins

It is possible to extend hekad by writing input, decoder, filter, or output
plugins in Go (see Extending Heka). Because Go only supports static linking of
Go code, your plugins must be included with and registered into Heka at
compile time. The build process supports this through the use of an optional
cmake file {heka root}/cmake/plugin_loader.cmake. A cmake function has been
provided add_external_plugin taking the repository type (git, hg, or svn),
repository URL, the repository tag to fetch, and an optional list of
sub-packages to be initialized.

add_external_plugin(git https://github.com/mozilla-services/heka-mozsvc-plugins dev)
add_external_plugin(git https://github.com/example/path dev util filepath)

The preceeding entry clones the heka-mozsvc-plugins git repository into the Go
work environment, checks out the dev branch, and imports the package into
hekad when make is run. By adding an init() function [http://golang.org/doc/effective_go.html#init]
in your package you can make calls into pipeline.RegisterPlugin to register
your plugins with Heka’s configuration system.

Creating Packages

Installing packages on a system is generally the easiest way to deploy
hekad. These packages can be easily created after following the above
From Source directions:

1. Run cpack to build the appropriate package(s) for the current
system:

cpack # All
Or use the makefile target
make package # Unix
mingw32-make package # Windows

The packages will be created in the build directory.

Note

You will need rpmbuild installed to build the rpms.

See also

Setting up an rpm-build environment [http://wiki.centos.org/HowTos/SetupRpmBuildEnvironment]

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hekad 0.4.1 documentation

Configuring hekad

A hekad configuration file specifies what inputs, decoders, filters,
and outputs will be loaded. The configuration file is in TOML [https://github.com/mojombo/toml] format. TOML looks is very similar
to INI configuration formats, but with slightly more rich data
structures and nesting support.

The config file is broken into sections, with each section representing
a single instance of a plugin. The section name specifies the name of
the plugin, and the “type” parameter specifies the plugin type; this
must match one of the types registered via the
pipeline.RegisterPlugin function. For example, the following section
describes a plugin named “tcp:5565”, an instance of Heka’s plugin type
“TcpInput”:

[tcp:5565]
type = "TcpInput"
parser_type = "message.proto"
decoder = "ProtobufDecoder"
address = ":5565"

If you choose a plugin name that also happens to be a plugin type name,
then you can omit the “type” parameter from the section and the
specified name will be used as the type. Thus, the following section
describes a plugin named “TcpInput”, also of type “TcpInput”:

[TcpInput]
address = ":5566"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

Note that it’s fine to have more than one instance of the same plugin
type, as long as their configurations don’t interfere with each other.

Any values other than “type” in a section, such as “address” in the
above examples, will be passed through to the plugin for internal
configuration (see Plugin Configuration).

A ProtobufDecoder will be automatically setup if not specified
explicitly in the configuration file.

If a plugin fails to load during startup, hekad will exit at startup.
When hekad is running, if a plugin should fail (due to connection loss,
inability to write a file, etc.) then hekad will either shut down or
restart the plugin if the plugin supports restarting. When a plugin is
restarting, hekad will likely stop accepting messages until the plugin
resumes operation (this applies only to filters/output plugins).

Plugins specify that they support restarting by implementing the
Restarting interface (see restarting_plugins). Plugins
supporting Restarting can have their restarting behavior
configured.

An internal diagnostic runner runs every 30 seconds to sweep the packs
used for messages so that possible bugs in heka plugins can be reported
and pinned down to a likely plugin(s) that failed to properly recycle
the pack.

Global configuration options

You can optionally declare a [hekad] section in your configuration
file to configure some global options for the heka daemon.

Parameters:

	
	cpuprof (string output_file):

	Turn on CPU profiling of hekad; output is logged to the output_file.

	
	max_message_loops (uint):

	The maximum number of times a message can be re-injected into the system.
This is used to prevent infinite message loops from filter to filter;
the default is 4.

	
	max_process_inject (uint):

	The maximum number of messages that a sandbox filter’s ProcessMessage
function can inject in a single call; the default is 1.

	
	max_process_duration (uint64):

	The maximum number of nanoseconds that a sandbox filter’s ProcessMessage
function can consume in a single call before being terminated; the default
is 100000.

	
	max_timer_inject (uint):

	The maximum number of messages that a sandbox filter’s TimerEvent
function can inject in a single call; the default is 10.

	
	max_pack_idle (string):

	A time duration string (e.x. “2s”, “2m”, “2h”) indicating how long a
message pack can be ‘idle’ before its considered leaked by heka. If too
many packs leak from a bug in a filter or output then heka will eventually
halt. This setting indicates when that is considered to have occurred.

	
	maxprocs (int):

	Enable multi-core usage; the default is 1 core. More cores will generally
increase message throughput. Best performance is usually attained by
setting this to 2 x (number of cores). This assumes each core is
hyper-threaded.

	
	memprof (string output_file):

	Enable memory profiling; output is logged to the output_file.

	
	poolsize (int):

	Specify the pool size of maximum messages that can exist; default is 100
which is usually sufficient and of optimal performance.

	
	decoder_poolsize (int):

	Specify the number of decoder sets to spin up for use converting input
data to Heka’s Message objects. Default is 4, optimal value is variable,
depending on number of total running plugins, number of expected
concurrent connections, amount of expected traffic, and number of
available cores on the host.

	
	plugin_chansize (int):

	Specify the buffer size for the input channel for the various Heka
plugins. Defaults to 50, which is usually sufficient and of optimal
performance.

	
	base_dir (string):

	Base working directory Heka will use for persistent storage through
process and server restarts. Defaults to /var/cache/hekad (or
c:varcachehekad on windows).

Example hekad.toml file

[hekad]
cpuprof = "/var/log/hekad/cpuprofile.log"
decoder_poolsize = 10
max_message_loops = 4
max_process_inject = 10
max_timer_inject = 10
maxprocs = 10
memprof = "/var/log/hekad/memprof.log"
plugin_chansize = 10
poolsize = 100

Listens for Heka messages on TCP port 5565.
[TcpInput]
address = ":5565"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

Writes output from `CounterFilter`, `lua_sandbox`, and Heka's internal
reports to stdout.
[debug]
type = "LogOutput"
message_matcher = "Type == 'heka.counter-output' || Type == 'heka.all-report' || Type == 'heka.sandbox-output'"

Counts throughput of messages sent from a Heka load testing tool.
[CounterFilter]
message_matcher = "Type == 'hekabench' && EnvVersion == '0.8'"
output_timer = 1

Defines a sandboxed filter that will be written in Lua.
[lua_sandbox]
type = "SandboxFilter"
message_matcher = "Type == 'hekabench' && EnvVersion == '0.8'"
output_timer = 1
script_type = "lua"
preserve_data = true
filename = "lua/sandbox.lua"
memory_limit = 32767
instruction_limit = 1000
output_limit = 1024

Common Roles

	Agent - Single default filter that passes all messages directly to
another hekad daemon on a separate machine configured as an
Router.

	Aggregator - Runs filters that can roll-up statistics (similar to
statsd), and handles aggregating similar messages before saving them
to a back-end directly or possibly forwarding them to a hekad
router.

	Router - Collects input messages from multiple sources (including
other hekad daemons acting as Agents), rolls up stats, and routes
messages to appropriate back-ends.

Command Line Options

	-version

	Output the version number, then exit.

	-config config_file

	Specify the configuration file to use; the default is /etc/hekad.toml. (See hekad.config(5).)

Configuring Restarting Behavior

Plugins that support being restarted have a set of options that govern
how the restart is handled. If preferred, the plugin can be configured
to not restart at which point hekad will exit, or it could be restarted
only 100 times, or restart attempts can proceed forever.

Adding the restarting configuration is done by adding a config section
to the plugins’ config called retries. A small amount of jitter will
be added to the delay between restart attempts.

Parameters:

	
	max_jitter (string):

	The longest jitter duration to add to the delay between restarts. Jitter
up to 500ms by default is added to every delay to ensure more even
restart attempts over time.

	
	max_delay (string):

	The longest delay between attempts to restart the plugin. Defaults to
30s (30 seconds).

	
	delay (string):

	The starting delay between restart attempts. This value will be the
initial starting delay for the exponential back-off, and capped to
be no larger than the max_delay. Defaults to 250ms.

	
	max_retries (int):

	Maximum amount of times to attempt restarting the plugin before giving
up and shutting down hekad. Use 0 for no retry attempt, and -1 to
continue trying forever (note that this will cause hekad to halt
possibly forever if the plugin cannot be restarted).

Example (UdpInput does not actually support nor need restarting,
illustrative purposes only):

[UdpInput]
address = "127.0.0.1:4880"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

[UdpInput.retries]
max_delay = 30s
delay = 250ms
max_retries = 5

Inputs

AMQPInput

Connects to a remote AMQP broker (RabbitMQ) and retrieves messages from
the specified queue. If the message is serialized by hekad’s AMQPOutput
then the message will be de-serialized, otherwise the message will be
run through the specified PayloadRegexDecoder’s. As AMQP is dynamically
programmable, the broker topology needs to be specified.

Parameters:

	
	URL (string):

	An AMQP connection string formatted per the RabbitMQ URI Spec [http://www.rabbitmq.com/uri-spec.html].

	
	Exchange (string):

	AMQP exchange name

	
	ExchangeType (string):

	AMQP exchange type (fanout, direct, topic, or headers).

	
	ExchangeDurability (bool):

	Whether the exchange should be configured as a durable exchange. Defaults
to non-durable.

	
	ExchangeAutoDelete (bool):

	Whether the exchange is deleted when all queues have finished and there
is no publishing. Defaults to auto-delete.

	
	RoutingKey (string):

	The message routing key used to bind the queue to the exchange. Defaults
to empty string.

	
	PrefetchCount (int):

	How many messages to fetch at once before message acks are sent. See
RabbitMQ performance measurements [http://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/]
for help in tuning this number. Defaults to 2.

	
	Queue (string):

	Name of the queue to consume from, an empty string will have the broker
generate a name for the queue. Defaults to empty string.

	
	QueueDurability (bool):

	Whether the queue is durable or not. Defaults to non-durable.

	
	QueueExclusive (bool):

	Whether the queue is exclusive (only one consumer allowed) or not.
Defaults to non-exclusive.

	
	QueueAutoDelete (bool):

	Whether the queue is deleted when the last consumer un-subscribes.
Defaults to auto-delete.

	
	Decoder (string):

	Decoder name used to transform a raw message body into a structured hekad
message. Must be a decoder appropriate for the messages that come in from
the exchange.

Since many of these parameters have sane defaults, a minimal configuration to
consume serialized messages would look like:

[AMQPInput]
url = "amqp://guest:guest@rabbitmq/"
exchange = "testout"
exchangeType = "fanout"

Or if using a PayloadRegexDecoder to parse OSX syslog messages may look like:

[AMQPInput]
url = "amqp://guest:guest@rabbitmq/"
exchange = "testout"
exchangeType = "fanout"
decoder = "logparser"

[logparser]
type = "MultiDecoder"
order = ["logline", "leftovers"]

 [logparser.subs.logline]
 type = "PayloadRegexDecoder"
 MatchRegex = '\w+ \d+ \d+:\d+:\d+ \S+ (?P<Reporter>[^\[]+)\[(?P<Pid>\d+)](?P<Sandbox>[^:]+)?: (?P Remaining>.*)'

 [logparser.subs.logline.MessageFields]
 Type = "amqplogline"
 Hostname = "myhost"
 Reporter = "%Reporter%"
 Remaining = "%Remaining%"
 Logger = "%Logger%"
 Payload = "%Remaining%"

 [leftovers]
 type = "PayloadRegexDecoder"
 MatchRegex = '.*'

 [leftovers.MessageFields]
 Type = "drop"
 Payload = ""

UdpInput

Listens on a specific UDP address and port for messages. If the message is
signed it is verified against the signer name and specified key version. If
the signature is not valid the message is discarded otherwise the signer name
is added to the pipeline pack and can be use to accept messages using the
message_signer configuration option.

Note

The UDP payload is not restricted to a single message; since the stream
parser is being used multiple messages can be sent in a single payload.

Parameters:

	
	address (string):

	An IP address:port on which this plugin will listen.

	
	signer:

	Optional TOML subsection. Section name consists of a signer name,
underscore, and numeric version of the key.

	
	hmac_key (string):

	The hash key used to sign the message.

New in version 0.4.

	
	decoder (string):

	A decoder must be specified for the message.proto parser
(i.e. ProtobufDecoder) but is optional for token and regexp parsers (if no
decoder is specified the parsed data is available in the Heka message
payload).

	
	parser_type (string):

	
	token - splits the stream on a byte delimiter.

	regexp - splits the stream on a regexp delimiter.

	message.proto - splits the stream on protobuf message boundaries.

	
	delimiter (string): Only used for token or regexp parsers.

	Character or regexp delimiter used by the parser (default “\n”). For the
regexp delimiter a single capture group can be specified to preserve the
delimiter (or part of the delimiter). The capture will be added to the start
or end of the message depending on the delimiter_location configuration.

	
	delimiter_location (string): Only used for regexp parsers.

	
	start - the regexp delimiter occurs at the start of the message.

	end - the regexp delimiter occurs at the end of the message (default).

Example:

[UdpInput]
address = "127.0.0.1:4880"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

[UdpInput.signer.ops_0]
hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
[UdpInput.signer.ops_1]
hmac_key = "xdd908lfcgikauexdi8elogusridaxoalf"

[UdpInput.signer.dev_1]
hmac_key = "haeoufyaiofeugdsnzaogpi.ua,dp.804u"

TcpInput

Listens on a specific TCP address and port for messages. If the message is
signed it is verified against the signer name and specified key version. If
the signature is not valid the message is discarded otherwise the signer name
is added to the pipeline pack and can be use to accept messages using the
message_signer configuration option.

Parameters:

	
	address (string):

	An IP address:port on which this plugin will listen.

	
	signer:

	Optional TOML subsection. Section name consists of a signer name,
underscore, and numeric version of the key.

	
	hmac_key (string):

	The hash key used to sign the message.

New in version 0.4.

	
	decoder (string):

	A decoder must be specified for the message.proto parser
(i.e. ProtobufDecoder) but is optional for token and regexp parsers (if no
decoder is specified the parsed data is available in the Heka message
payload).

	
	parser_type (string):

	
	token - splits the stream on a byte delimiter.

	regexp - splits the stream on a regexp delimiter.

	message.proto - splits the stream on protobuf message boundaries.

	
	delimiter (string): Only used for token or regexp parsers.

	Character or regexp delimiter used by the parser (default “\n”). For the
regexp delimiter a single capture group can be specified to preserve the
delimiter (or part of the delimiter). The capture will be added to the start
or end of the message depending on the delimiter_location configuration.

	
	delimiter_location (string): Only used for regexp parsers.

	
	start - the regexp delimiter occurs at the start of the message.

	end - the regexp delimiter occurs at the end of the message (default).

Example:

[TcpInput]
address = ":5565"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

[TcpInput.signer.ops_0]
hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
[TcpInput.signer.ops_1]
hmac_key = "xdd908lfcgikauexdi8elogusridaxoalf"

[TcpInput.signer.dev_1]
hmac_key = "haeoufyaiofeugdsnzaogpi.ua,dp.804u"

LogfileInput

Tails a single log file, creating a message for each line in the file being
monitored. Files are read in their entirety, and watched for changes. This
input gracefully handles log rotation via the file moving but may lose a few
log lines if using the “truncation” method of log rotation. It’s recommended
to use log rotation schemes that move the file to another location to avoid
possible loss of log lines.

In the event the log file does not currently exist, it will be placed in an
internal discover list, and checked for existence every discover_interval
milliseconds (5000ms or 5s by default).

A single LogfileInput can only be used to read a single file. If you have
multiple identical files spread across multiple directories (e.g. a
/var/log/hosts/<HOSTNAME>/app.log structure, where each <HOSTNAME> folder
contains a log file originating from a separate host), you’ll want to use the
LogfileDirectoryManagerInput.

Parameters:

	
	logfile (string):

	Each LogfileInput can have a single logfile to monitor.

	
	hostname (string):

	The hostname to use for the messages, by default this will be the
machines qualified hostname. This can be set explicitly to ensure
its the correct name in the event the machine has multiple
interfaces/hostnames.

	
	discover_interval (int):

	During logfile rotation, or if the logfile is not originally
present on the system, this interval is how often the existence of
the logfile will be checked for. The default of 5 seconds is
usually fine. This interval is in milliseconds.

	
	stat_interval (int):

	How often the file descriptors for each file should be checked to
see if new log data has been written. Defaults to 500 milliseconds.
This interval is in milliseconds.

	
	logger (string):

	Each LogfileInput may specify a logger name to use in the case an
error occurs during processing of a particular line of logging
text. By default, the logger name is set to the logfile name.

	
	use_seek_journal (bool):

	Specifies whether to use a seek journal to keep track of where we are
in a file to be able to resume parsing from the same location upon
restart. Defaults to true.

	
	seek_journal_name (string):

	Name to use for the seek journal file, if one is used. Only refers to
the file name itself, not the full path; Heka will store all seek
journals in a seekjournal folder relative to the Heka base directory.
Defaults to a sanitized version of the logger value (which itself
defaults to the filesystem path of the input file). This value is
ignored if use_seek_journal is set to false.

	
	resume_from_start (bool):

	When heka restarts, if a logfile cannot safely resume reading from
the last known position, this flag will determine whether hekad
will force the seek position to be 0 or the end of file. By
default, hekad will resume reading from the start of file.

New in version 0.4.

	
	decoder (string):

	A decoder must be specified for the message.proto parser
(i.e. ProtobufDecoder) but is optional for token and regexp parsers (if no
decoder is specified the parsed data is available in the Heka message
payload).

	
	parser_type (string):

	
	token - splits the log on a byte delimiter (default).

	regexp - splits the log on a regexp delimiter.

	message.proto - splits the log on protobuf message boundaries

	
	delimiter (string): Only used for token or regexp parsers.

	Character or regexp delimiter used by the parser (default “\n”). For the
regexp delimiter a single capture group can be specified to preserve the
delimiter (or part of the delimiter). The capture will be added to the start
or end of the log line depending on the delimiter_location configuration.
Note: when a start delimiter is used the last line in the file will not be
processed (since the next record defines its end) until the log is rolled.

	
	delimiter_location (string): Only used for regexp parsers.

	
	start - the regexp delimiter occurs at the start of a log line.

	end - the regexp delimiter occurs at the end of the log line (default).

[LogfileInput]
logfile = "/var/log/opendirectoryd.log"
logger = "opendirectoryd"

[LogfileInput]
logfile = "/var/log/opendirectoryd.log"

LogfileDirectoryManagerInput

Scans for log files in a globbed directory path and when a new file matching
the specified path is discovered it will start an instance of the LogfileInput
plugin to process it. Each LogfileInput will inherit its configuration from
the manager’s settings with the logfile property properly adjusted.

Parameters: (identical to LogfileInput with the following exceptions)

	
	logfile (string):

	A path with a globbed directory component pointing to a common (statically
named) log file. Note that only directories can be globbed; the file itself
must have the same name in each directory.

	
	seek_journal_name (string):

	With a LogfileInput it is possible to specify a particular name for the
seek journal file that will be used. This is not possible with the
LogfileDirectoryManagerInput; the seek_journal_name will always be auto-
generated, and any attempt to specify a hard coded seek_journal_name will
be treated as a configuration error.

	
	ticker_interval (uint):

	Time interval (in seconds) between directory scans for new log files.
Defaults to 0 (only scans once on startup).

[vhosts]
type = "LogfileDirectoryManagerInput"
logfile = "/var/log/vhost/*/apache.log"

Note

The spawned LogfileInput plugins are named manager_name-logfile i.e.,

	vhosts-/var/log/www/apache.log

	vhosts-/var/log/internal/apache.log

StatsdInput

Listens for statsd protocol [https://github.com/b/statsd_spec] counter,
timer, or gauge messages on a UDP port, and generates Stat objects that
are handed to a StatAccumulator for aggregation and processing.

Parameters:

	
	address (string):

	An IP address:port on which this plugin will expose a statsd server.
Defaults to “127.0.0.1:8125”.

	
	stat_accum_name (string):

	Name of a StatAccumInput instance that this StatsdInput will use as its
StatAccumulator for submitting received stat values. Defaults to
“StatAccumInput”.

Example:

[StatsdInput]
address = ":8125"
stat_accum_input = "custom_stat_accumulator"

StatAccumInput

Provides an implementation of the StatAccumulator interface which other
plugins can use to submit Stat objects for aggregation and roll-up.
Accumulates these stats and then periodically emits a “stat metric” type
message containing aggregated information about the stats received since the
last generated message.

Parameters:

	
	emit_in_payload (bool):

	Specifies whether or not the aggregated stat information should be emitted
in the payload of the generated messages, in the format accepted by the
carbon [http://graphite.wikidot.com/carbon] portion of the graphite [http://graphite.wikidot.com/] graphing software. Defaults to true.

	
	emit_in_fields (bool):

	Specifies whether or not the aggregated stat information should be emitted
in the message fields of the generated messages. Defaults to false. NOTE:
At least one of ‘emit_in_payload’ or ‘emit_in_fields’ must be true or it
will be considered a configuration error and the input won’t start.

	
	percent_threshold (int):

	Percent threshold to use for computing “upper_N%” type stat values.
Defaults to 90.

	
	ticker_interval (uint):

	Time interval (in seconds) between generated output messages.
Defaults to 10.

	
	message_type (string):

	String value to use for the Type value of the emitted stat messages.
Defaults to “heka.statmetric”.

ProcessInput

Executes one or more external programs on an interval, creating
messages from the output. If a chain of commands is used, stdout is
piped into the next command’s stdin. In the event the program returns a
non-zero exit code, ProcessInput will stop, logging the exit error.

Parameters:
Each command is defined with the following parameters:

	Name (string):
Each ProcessInput must have a name defined for logging purposes.
The messages will be tagged with name.stdout or name.stderr in
the ProcessInputName field of the heka message.

	
	Command (map[uint]cmd_config):

	The command is a structure that contains the full path to the
binary, command line arguments, optional enviroment variables and
an optional working directory. See the cmd_config definition
below. ProcessInput expects the commands to be indexed by
integers starting with 0.

	
	ticker_interval (uint):

	The number of seconds to wait between runnning command.
Defaults to 15. A ticker_interval of 0 indicates that the command
is run once.

	
	stdout (bool):

	Capture stdout from command. Defaults to true.

	
	stderr (bool):

	Capture stderr from command. Defaults to false.

	
	decoder (string):

	Name of the decoder instance to send messages to. Default is to inject
messages back into the main heka router.

	
	parser_type (string):

	
	token - splits the log on a byte delimiter (default).

	regexp - splits the log on a regexp delimiter.

	
	delimiter (string): Only used for token or regexp parsers.

	Character or regexp delimiter used by the parser (default “\n”). For the
regexp delimiter a single capture group can be specified to preserve the
delimiter (or part of the delimiter). The capture will be added to the start
or end of the log line depending on the delimiter_location configuration.
Note: when a start delimiter is used the last line in the file will not be
processed (since the next record defines its end) until the log is rolled.

	
	delimiter_location (string): Only used for regexp parsers.

	
	start - the regexp delimiter occurs at the start of a log line.

	end - the regexp delimiter occurs at the end of the log line (default).

	timeout (uint):
Timeout in seconds before any one of the commands in the chain is
terminated.

	trim (bool) :
Trim a single trailing newline character if one exists. Default is
true.

cmd_config structure

- bin (string):

The full path to the binary that will be executed.

	
	args ([]string):

	Command line arguments to pass into the executable.

	
	environment ([]string):

	Used to set environment variables before command is run. Default is nil,
which uses the heka process’s environment.

	
	directory (string):

	Used to set the working directory of Bin Default is “”, which
uses the heka process’s working directory.

[ProcessInput]
name = "DemoProcessInput"
ticker_interval = 2
parser_type = "token"
delimiter = " "
stdout = true
stderr = false
trim = true

[ProcessInput.Command.0]
bin = "/bin/cat"
Args = ["../testsupport/process_input_pipes_test.txt"]

[ProcessInput.Command.1]
bin = "/usr/bin/grep"
Args = ["ignore"]

HttpInput

Starts a HTTP client which intermittently polls a URL for data.
The entire response body is parsed by a decoder into a pipeline pack.
Data is always fetched using HTTP GET and any errors are logged and
are not fatal for the plugin.

Parameters:

	
	url (string):

	A HTTP URL which this plugin will regularly poll for data.
No default URL is specified.

	
	ticker_interval (uint):

	Time interval (in seconds) between attempts to poll for new data.
Defaults to 10.

	
	decoder (string):

	The name of the decoder used to transform the response body text into
a structured hekad message. No default decoder is specified.

Example:

[HttpInput]
url = "http://localhost:9876/"
ticker_interval = 5
decoder = "ProtobufDecoder"

Decoders

A decoder may be specified for each encoding type defined in message.pb.go.
Unless you are using a custom decoder you probably won’t need to specify these
by hand, by default the ProtobufDecoder will be configured as if you
had included the following configuration.

Example:

[ProtobufDecoder]
encoding_name = "PROTOCOL_BUFFER"

The ProtobufDecoder converts protocol buffers serialized messages to
Message struct objects. The hekad protocol buffers message schema in
defined in the message.proto file in the message package.

Note

These sections remain configurable explicitly in the configuration
file for possible future use where a different Decoder may want to
handle one of these encodings.

See also

Protocol Buffers - Google’s data interchange format [http://code.google.com/p/protobuf/]

PayloadRegexDecoder

Decoder plugin that accepts messages of a specified form and generates new
outgoing messages from extracted data, effectively transforming one message
format into another. Can be combined w/ message_matcher capture groups (see
matcher_capture_groups) to extract unstructured information from
message payloads and use it to populate Message struct attributes and fields
in a more structured manner.

Parameters:

	
	match_regex:

	Regular expression that must match for the decoder to process the message.

	
	severity_map:

	Subsection defining severity strings and the numerical value they should
be translated to. hekad uses numerical severity codes, so a severity of
WARNING can be translated to 3 by settings in this section.

	
	message_fields:

	Subsection defining message fields to populate and the interpolated values
that should be used. Valid interpolated values are any captured in a regex
in the message_matcher, and any other field that exists in the message. In
the event that a captured name overlaps with a message field, the captured
name’s value will be used. Optional representation metadata can be added at
the end of the field name using a pipe delimiter i.e. ResponseSize|B =
“%ResponseSize%” will create Fields[ResponseSize] representing the number of
bytes. Adding a representation string to a standard message header name
will cause it to be added as a user defined field i.e., Payload|json will
create Fields[Payload] with a json representation.

Interpolated values should be surrounded with % signs, for example:

[my_decoder.message_fields]
Type = "%Type%Decoded"

This will result in the new message’s Type being set to the old messages
Type with Decoded appended.

	
	timestamp_layout (string):

	A formatting string instructing hekad how to turn a time string into the
actual time representation used internally. Example timestamp layouts can
be seen in Go’s time documetation [http://golang.org/pkg/time/#pkg-constants].

	
	timestamp_location (string):

	Time zone in which the timestamps in the text are presumed to be in.
Should be a location name corresponding to a file in the IANA Time Zone
database (e.g. “America/Los_Angeles”), as parsed by Go’s
time.LoadLocation() function (see
http://golang.org/pkg/time/#LoadLocation). Defaults to “UTC”. Not required
if valid time zone info is embedded in every parsed timestamp, since those
can be parsed as specified in the timestamp_layout.

Example (Parsing Apache Combined Log Format):

[apache_transform_decoder]
type = "PayloadRegexDecoder"
match_regex = '/^(?P<RemoteIP>\S+) \S+ \S+ \[(?P<Timestamp>[^\]]+)\] "(?P<Method>[A-Z]+) (?P<Url>[^\s]+)[^"]*" (?P<StatusCode>\d+) (?P<RequestSize>\d+) "(?P<Referer>[^"]*)" "(?P<Browser>[^"]*)"/'
timestamplayout = "02/Jan/2006:15:04:05 -0700"

[apache_transform_decoder.severity_map]
DEBUG = 1
WARNING = 2
INFO = 3

[apache_transform_decoder.message_fields]
Type = "ApacheLogfile"
Logger = "apache"
Url|uri = "%Url%"
Method = "%Method%"
Status = "%Status%"
RequestSize|B = "%RequestSize%"
Referer = "%Referer%"
Browser = "%Browser%"

PayloadJsonDecoder

This decoder plugin accepts JSON blobs and allows you to map parts
of the JSON into Field attributes of the pipelinepack message using
JSONPath syntax.

Parameters:

	
	json_map:

	A subsection defining a capture name that maps to a JSONPath expression.
Each expression can fetch a single value, if the expression does
not resolve to a valid node in the JSON message, the capture group
will be assigned an empty string value.

	
	severity_map:

	Subsection defining severity strings and the numerical value they should
be translated to. hekad uses numerical severity codes, so a severity of
WARNING can be translated to 3 by settings in this section.

	
	message_fields:

	Subsection defining message fields to populate and the interpolated values
that should be used. Valid interpolated values are any captured in a JSONPath
in the message_matcher, and any other field that exists in the message. In
the event that a captured name overlaps with a message field, the captured
name’s value will be used. Optional representation metadata can be added at
the end of the field name using a pipe delimiter i.e. ResponseSize|B =
“%ResponseSize%” will create Fields[ResponseSize] representing the number of
bytes. Adding a representation string to a standard message header name
will cause it to be added as a user defined field i.e., Payload|json will
create Fields[Payload] with a json representation.

Interpolated values should be surrounded with % signs, for example:

[my_decoder.message_fields]
Type = "%Type%Decoded"

This will result in the new message’s Type being set to the old messages
Type with Decoded appended.

	
	timestamp_layout (string):

	A formatting string instructing hekad how to turn a time string into the
actual time representation used internally. Example timestamp layouts can
be seen in Go’s time documetation [http://golang.org/pkg/time/#pkg-constants]. The default layout is ISO8601 - the same as
Javascript.

	
	timestamp_location (string):

	Time zone in which the timestamps in the text are presumed to be in.
Should be a location name corresponding to a file in the IANA Time Zone
database (e.g. “America/Los_Angeles”), as parsed by Go’s
time.LoadLocation() function (see
http://golang.org/pkg/time/#LoadLocation). Defaults to “UTC”. Not required
if valid time zone info is embedded in every parsed timestamp, since those
can be parsed as specified in the timestamp_layout.

Example:

[myjson_decoder]
type = "PayloadJsonDecoder"

[myjson_decoder.json_map]
Count = "$.statsd.count"
Name = "$.statsd.name"
Pid = "$.pid"
Timestamp = "$.timestamp"

[myjson_decoder.severity_map]
DEBUG = 1
WARNING = 2
INFO = 3

[myjson_decoder.message_fields]
Pid = "%Pid%"
StatCount = "%Count%"
StatName = "%Name%"
Timestamp = "%Timestamp%"

PayloadJsonDecoder’s json_map config subsection only supports a small
subset of valid JSONPath expressions.

	JSONPath
	Description

	$
	the root object/element

	.
	child operator

	[]
	subscript operator to iterate over arrays

Examples:

var s = {
 "foo": {
 "bar": [
 {
 "baz": "こんにちわ世界",
 "noo": "aaa"
 },
 {
 "maz": "123",
 "moo": 256
 }
],
 "boo": {
 "bag": true,
 "bug": false
 }
 }
}

Valid paths
$.foo.bar[0].baz
$.foo.bar

PayloadXmlDecoder

This decoder plugin accepts XML blobs in the message payload and
allows you to map parts of the XML into Field attributes of the
pipelinepack message using XPath syntax using the xmlpath [http://launchpad.net/xmlpath] library.

Parameters:

	
	xpath_map:

	A subsection defining a capture name that maps to an XPath expression.
Each expression can fetch a single value, if the expression does
not resolve to a valid node in the XML blob, the capture group
will be assigned an empty string value.

	
	severity_map:

	Subsection defining severity strings and the numerical value they should
be translated to. hekad uses numerical severity codes, so a severity of
WARNING can be translated to 3 by settings in this section.

	
	message_fields:

	Subsection defining message fields to populate and the interpolated values
that should be used. Valid interpolated values are any captured in an XPath
in the message_matcher, and any other field that exists in the message. In
the event that a captured name overlaps with a message field, the captured
name’s value will be used. Optional representation metadata can be added at
the end of the field name using a pipe delimiter i.e. ResponseSize|B =
“%ResponseSize%” will create Fields[ResponseSize] representing the number of
bytes. Adding a representation string to a standard message header name
will cause it to be added as a user defined field i.e., Payload|json will
create Fields[Payload] with a json representation.

Interpolated values should be surrounded with % signs, for example:

[my_decoder.message_fields]
Type = "%Type%Decoded"

This will result in the new message’s Type being set to the old messages
Type with Decoded appended.

	
	timestamp_layout (string):

	A formatting string instructing hekad how to turn a time string into the
actual time representation used internally. Example timestamp layouts can
be seen in Go’s time documetation [http://golang.org/pkg/time/#pkg-constants]. The default layout is ISO8601 - the same as
Javascript.

	
	timestamp_location (string):

	Time zone in which the timestamps in the text are presumed to be in.
Should be a location name corresponding to a file in the IANA Time Zone
database (e.g. “America/Los_Angeles”), as parsed by Go’s
time.LoadLocation() function (see
http://golang.org/pkg/time/#LoadLocation). Defaults to “UTC”. Not required
if valid time zone info is embedded in every parsed timestamp, since those
can be parsed as specified in the timestamp_layout.

Example:

[myxml_decoder]
type = "PayloadXmlDecoder"

[myxml_decoder.xpath_map]
Count = "/some/path/count"
Name = "/some/path/name"
Pid = "//pid"
Timestamp = "//timestamp"

[myxml_decoder.severity_map]
DEBUG = 1
WARNING = 2
INFO = 3

[myxml_decoder.message_fields]
Pid = "%Pid%"
StatCount = "%Count%"
StatName = "%Name%"
Timestamp = "%Timestamp%"

PayloadXmlDecoder’s xpath_map config subsection supports XPath as
implemented by the xmlpath [http://launchpad.net/xmlpath] library.

	All axes are supported (“child”, “following-sibling”, etc)

	All abbreviated forms are supported (”.”, “//”, etc)

	All node types except for namespace are supported

	Predicates are restricted to [N], [path], and [path=literal] forms

	Only a single predicate is supported per path step

	Richer expressions and namespaces are not supported

New in version 0.4.

StatsToFieldsDecoder

The StatsToFieldsDecoder will parse statsd data in the graphite message
format [http://graphite.wikidot.com/getting-your-data-into-graphite#toc4]
and encode the data into the message fields, in the same format produced by a
StatAccumInput plugin with the emit_in_fields value set to
true. This is useful if you have externally generated statsd string data
flowing through Heka that you’d like to process without having to roll your
own string parsing code.

This decoder has no configuration options, it simply expects to be passed a
message with statsd string data in the payload. Incorrect or malformed content
will cause a decoding error, dropping the message.

The fields format only contains a single “timestamp” field, so any payloads
containing multiple timestamps will end up generating a separate message for
each timestamp. Extra messages will be a copy of the original message except
a) the payload will be empty and b) the unique timestamp and related stats
will be the only message fields.

MultiDecoder

This decoder plugin allows you to specify an ordered list of delegate
decoders. The MultiDecoder will pass the PipelinePack to be decoded to each
of the delegate decoders in turn until decode succeeds. In the case of
failure to decode, MultiDecoder will return an error and recycle the message.

Parameters:

	
	subs:

	A subsection is used to declare the TOML configuration for any delegate
decoders. The default is that no delegate decoders are defined.

	
	order (list of strings):

	PipelinePack objects will be passed in order to each decoder in this list.
Default is an empty list.

	
	name (string):

	Defaults to MultiDecoder-<address of multidecoder>.

	
	log_sub_errors (bool):

	If true, the DecoderRunner will log the errors returned whenever a
delegate decoder fails to decode a message. Defaults to false.

	
	cascade_strategy (string):

	Specifies behavior the MultiDecoder should exhibit with regard to
cascading through the listed decoders. Supports only two valid values:
“first-wins” and “all”. With “first-wins”, each decoder will be tried in
turn until there is a successful decoding, after which decoding will be
stopped. With “all”, all listed decoders will be applied whether or not
they succeed. In each case, decoding will only be considered to have
failed if none of the sub-decoders succeed.

Example (Two PayloadRegexDecoder delegates):

[syncdecoder]
type = "MultiDecoder"
order = ['syncformat', 'syncraw']

[syncdecoder.subs.syncformat]
type = "PayloadRegexDecoder"
match_regex = '^(?P<RemoteIP>\S+) \S+ (?P<User>\S+) \[(?P<Timestamp>[^\]]+)\] "(?P<Method>[A-Z]+) (?P<Url>[^\s]+)[^"]*" (?P<StatusCode>\d+) (?P<RequestSize>\d+) "(?P<Referer>[^"]*)" "(?P<Browser>[^"]*)" ".*" ".*" node_s:\d+\.\d+ req_s:(?P<ResponseTime>\d+\.\d+) retries:\d+ req_b:(?P<ResponseSize>\d+)'
timestamp_layout = "02/Jan/2006:15:04:05 -0700"

[syncdecoder.subs.syncformat.message_fields]
RemoteIP|ipv4 = "%RemoteIP%"
User = "%User%"
Method = "%Method%"
Url|uri = "%Url%"
StatusCode = "%StatusCode%"
RequestSize|B= "%RequestSize%"
Referer = "%Referer%"
Browser = "%Browser%"
ResponseTime|s = "%ResponseTime%"
ResponseSize|B = "%ResponseSize%"
Payload = ""

[syncdecoder.subs.syncraw]
type = "PayloadRegexDecoder"
match_regex = '^(?P<TheData>.*)'

[syncdecoder.subs.syncraw.message_fields]
Somedata = "%TheData%"

Sandbox Decoder

The sandbox decoder provides an isolated execution environment for data parsing
and complex transformations without the need to recompile Heka.

SandboxDecoder Settings

Common Filter / Output Parameters

There are some configuration options that are universally available to all
Heka filter and output plugins. These will be consumed by Heka itself when
Heka initializes the plugin and do not need to be handled by the plugin-
specific initialization code.

	
	message_matcher (string, optional):

	Boolean expression, when evaluated to true passes the message to the filter
for processing. Defaults to matching nothing. See: Message Matcher Syntax

	
	message_signer (string, optional):

	The name of the message signer. If specified only messages with this
signer are passed to the filter for processing.

	
	ticker_interval (uint, optional):

	Frequency (in seconds) that a timer event will be sent to the filter.
Defaults to not sending timer events.

Filters

CounterFilter

Once a second a CounterFilter will generate a message of type heka.counter-
output. The payload will contain text indicating the number of messages that
matched the filter’s message_matcher value during that second (i.e. it
counts the messages the plugin received). Every ten seconds an extra message
(also of type heka.counter-output) goes out, containing an aggregate count
and average per second throughput of messages received.

Parameters: None

Example:

[CounterFilter]
message_matcher = "Type != 'heka.counter-output'"

StatFilter

Filter plugin that accepts messages of a specfied form and uses extracted
message data to generate statsd-style numerical metrics in the form of Stat
objects that can be consumed by a StatAccumulator.

Parameters:

	
	Metric:

	Subsection defining a single metric to be generated

	
	type (string):

	Metric type, supports “Counter”, “Timer”, “Gauge”.

	
	name (string):

	Metric name, must be unique.

	
	value (string):

	Expression representing the (possibly dynamic) value that the
StatFilter should emit for each received message.

	
	stat_accum_name (string):

	Name of a StatAccumInput instance that this StatFilter will use as its
StatAccumulator for submitting generate stat values. Defaults to
“StatAccumInput”.

Example (Assuming you had TransformFilter inserting messages as above):

[StatsdInput]
address = "127.0.0.1:29301"
stat_accum_name = "my_stat_accum"

[my_stat_accum]
flushInterval = 5

[Hits]
type = "StatFilter"
stat_accum_name = "my_stat_accum"
message_matcher = 'Type == "ApacheLogfile"'

[Hits.Metric.bandwidth]
type = "Counter"
name = "httpd.bytes.%Hostname%"
value = "%Bytes%"

[Hits.Metric.method_counts]
type = "Counter"
name = "httpd.hits.%Method%.%Hostname%"
value = "1"

Note

StatFilter requires an available StatAccumulator to be running.

SandboxFilter

The sandbox filter provides an isolated execution environment for data analysis.

SandboxFilter Settings

SandboxManagerFilter

The sandbox manager provides dynamic control (start/stop) of sandbox filters in
a secure manner without stopping the Heka daemon.

SandboxManagerFilter Settings

Outputs

AMQPOutput

Connects to a remote AMQP broker (RabbitMQ) and sends messages to the
specified queue. The message is serialized if specified, otherwise only
the raw payload of the message will be sent. As AMQP is dynamically
programmable, the broker topology needs to be specified.

Parameters:

	
	URL (string):

	An AMQP connection string formatted per the RabbitMQ URI Spec [http://www.rabbitmq.com/uri-spec.html].

	
	Exchange (string):

	AMQP exchange name

	
	ExchangeType (string):

	AMQP exchange type (fanout, direct, topic, or headers).

	
	ExchangeDurability (bool):

	Whether the exchange should be configured as a durable exchange. Defaults
to non-durable.

	
	ExchangeAutoDelete (bool):

	Whether the exchange is deleted when all queues have finished and there
is no publishing. Defaults to auto-delete.

	
	RoutingKey (string):

	The message routing key used to bind the queue to the exchange. Defaults
to empty string.

	
	Persistent (bool):

	Whether published messages should be marked as persistent or transient.
Defaults to non-persistent.

	
	Serialize (bool):

	Whether published messages should be fully serialized. If set to true
then messages will be encoded to Protocol Buffers and have the AMQP
message Content-Type set to application/hekad. Defaults to true.

Example (that sends log lines from the logger):

[AMQPOutput]
url = "amqp://guest:guest@rabbitmq/"
exchange = "testout"
exchangeType = "fanout"
message_matcher = 'Logger == "/var/log/system.log"'

LogOutput

Logs messages to stdout using Go’s log package.

Parameters:

	
	payload_only (bool, optional):

	If set to true, then only the message payload string will be output,
otherwise the entire Message struct will be output in JSON format.

Example:

[counter_output]
type = "LogOutput"
message_matcher = "Type == 'heka.counter-output'"
payload_only = true

FileOutput

Writes message data out to a file system.

Parameters:

	
	path (string):

	Full path to the output file.

	
	format (string, optional):

	Output format for the message to be written. Supports json or
protobufstream, both of which will serialize the entire Message
struct, or text, which will output just the payload string. Defaults to
text.

	
	prefix_ts (bool, optional):

	Whether a timestamp should be prefixed to each message line in the file.
Defaults to false.

	
	perm (string, optional):

	File permission for writing. A string of the octal digit representation.
Defaults to “644”.

Example:

[counter_file]
type = "FileOutput"
message_matcher = "Type == 'heka.counter-output'"
path = "/var/log/heka/counter-output.log"
prefix_ts = true
perm = "666"

TcpOutput

Output plugin that serializes messages into the Heka protocol format and
delivers them to a listening TCP connection. Can be used to deliver messages
from a local running Heka agent to a remote Heka instance set up as an
aggregator and/or router.

Parameters:

	
	address (string):

	An IP address:port to which we will send our output data.

Example:

[aggregator_output]
type = "TcpOutput"
address = "heka-aggregator.mydomain.com:55"
message_matcher = "Type != 'logfile' && Type != 'heka.counter-output' && Type != 'heka.all-report'"

DashboardOutput

Specialized output plugin that listens for certain Heka reporting message
types and generates JSON data which is made available via HTTP for use in web
based dashboards and health reports.

Parameters:

	
	ticker_interval (uint):

	Specifies how often, in seconds, the dashboard files should be updated.
Defaults to 5.

	
	message_matcher (string):

	Defaults to “Type == ‘heka.all-report’ || Type == ‘heka.sandbox-output’
|| Type == ‘heka.sandbox-terminated’”. Not recommended to change this
unless you know what you’re doing.

	
	address (string):

	An IP address:port on which we will serve output via HTTP. Defaults to
“0.0.0.0:4352”.

	
	working_directory (string):

	File system directory into which the plugin will write data files and from
which it will serve HTTP. The Heka process must have read / write access
to this directory. Relative paths will be evaluated relative to the Heka
base directory. Defaults to “dashboard” (i.e. “$(BASE_DIR)/dashboard”).

	
	static_directory (string):

	File system directory where the Heka dashboard source code can be found.
The Heka process must have read access to this directory. Relative paths
will be evaluated relative to the Heka base directory. Defaults to
“/usr/share/heka/dasher”.

Example:

[DashboardOutput]
ticker_interval = 30

ElasticSearchOutput

Output plugin that serializes messages into JSON structures and uses HTTP requests
to insert them into an ElasticSearch database.

Parameters:

	
	cluster (string):

	ElasticSearch cluster name. Defaults to “elasticsearch”

	
	index (string):

	Name of the ES index into which the messages will be inserted.
If Field Name|Type|Hostname|Pid|UUID|Logger|EnvVersion|Severity
are placed between within a %{}, it will be interpolated to their message value.
Defaults to “heka-%{2006.01.02}”.

	
	type_name (string):

	Name of ES record type to create. Defaults to “message”.
If Field Name|Type|Hostname|Pid|UUID|Logger|EnvVersion|Severity
are placed between within a %{}, it will be interpolated to their message value.

	
	flush_interval (int):

	Interval at which accumulated messages should be bulk indexed into
ElasticSearch, in milliseconds. Defaults to 1000 (i.e. one second).

	
	flush_count (int):

	Number of messages that, if processed, will trigger them to be bulk
indexed into ElasticSearch. Defaults to 10.

	
	format (string):

	Message serialization format, either “clean”, “logstash_v0”, “payload” or
“raw”. “clean” is a more concise JSON representation of the message,
“logstash_v0” outputs in a format similar to Logstash’s original (i.e.
“version 0”) ElasticSearch schema, “payload” passes the message payload
directly into ElasticSearch, and “raw” is a full JSON representation of
the message. Defaults to “clean”.

	
	fields ([]string):

	If the format is “clean”, then the ‘fields’ parameter can be used to
specify that only specific message data should be indexed into
ElasticSearch. Available fields to choose are “Uuid”, “Timestamp”, “Type”,
“Logger”, “Severity”, “Payload”, “EnvVersion”, “Pid”, “Hostname”, and
“Fields” (where “Fields” causes the inclusion of any and all dynamically
specified message fields. Defaults to all.

	
	timestamp (string):

	Format to use for timestamps in generated ES documents. Defaults to
“2006-01-02T15:04:05.000Z”.

	
	server (string):

	ElasticSearch server URL. Supports http://, https:// and udp:// urls.
Defaults to “http://localhost:9200”.

	
	ESIndexFromTimestamp (bool):

	When generating the index name use the timestamp from the message
instead of the current time. Defaults to false.

Example:

[ElasticSearchOutput]
message_matcher = "Type == 'sync.log'"
cluster = "elasticsearch-cluster"
index = "synclog-%{2006.01.02.15.04.05}"
type_name = "sync.log.line"
server = "http://es-server:9200"
format = "clean"
flush_interval = 5000
flush_count = 10

WhisperOutput

WhisperOutput plugins parse the “statmetric” messages generated by a
StatAccumulator and write the extracted counter, timer, and gauge data out to
a graphite [http://graphite.wikidot.com/] compatible whisper database [http://graphite.wikidot.com/whisper] file tree structure.

Parameters:

	
	base_path (string):

	Path to the base directory where the whisper file tree will be written.
Absolute paths will be honored, relative paths will be calculated relative
to the Heka base directory. Defaults to “whisper” (i.e.
“$(BASE_DIR)/whisper”).

	
	default_agg_method (int):

	Default aggregation method to use for each whisper output file. Supports
the following values:

	Unknown aggregation method.

	Aggregate using averaging. (default)

	Aggregate using summation.

	Aggregate using last received value.

	Aggregate using maximum value.

	Aggregate using minimum value.

	
	default_archive_info ([][]int):

	Default specification for new whisper db archives. Should be a sequence of
3-tuples, where each tuple describes a time interval’s storage policy:
[<offset> <# of secs per datapoint> <# of datapoints>] (see whisper docs for more info). Defaults
to:

[[0, 60, 1440], [0, 900, 8], [0, 3600, 168], [0, 43200, 1456]]

The above defines four archive sections. The first uses 60 seconds for
each of 1440 data points, which equals one day of retention. The second
uses 15 minutes for each of 8 data points, for two hours of retention. The
third uses one hour for each of 168 data points, or 7 days of retention.
Finally, the fourth uses 12 hours for each of 1456 data points,
representing two years of data.

	
	folder_perm (string):

	Permission mask to be applied to folders created in the whisper database
file tree. Must be a string representation of an octal integer. Defaults
to “700”.

Example:

[WhisperOutput]
message_matcher = "Type == 'heka.statmetric'"
default_agg_method = 3
default_archive_info = [[0, 30, 1440], [0, 900, 192], [0, 3600, 168], [0, 43200, 1456]]
folder_perm = "755"

NagiosOutput

Specialized output plugin that listens for Nagios external command message types
and generates an HTTP request against the Nagios cmd.cgi API. Currently the
output will only send passive service check results. The message payload must
consist of a state followed by a colon and then the message i.e.,
“OK:Service is functioning properly”. The valid states are:
OK|WARNING|CRITICAL|UNKNOWN. Nagios must be configured with a service name that
matches the Heka plugin instance name and the hostname where the plugin is
running.

Parameters:

	
	url (string, optional):

	An HTTP URL to the Nagios cmd.cgi. Defaults to “http://localhost/nagios/cgi-bin/cmd.cgi”.

	
	username (string, optional):

	Username used to authenticate with the Nagios web interface. Defaults to “”.

	
	password (string, optional):

	Password used to authenticate with the Nagios web interface. Defaults to “”.

	
	responseheadertimeout (uint, optional):

	Specifies the amount of time, in seconds, to wait for a server’s response
headers after fully writing the request. Defaults to 2.

Example configuration to output alerts from SandboxFilter plugins:

[NagiosOutput]
url = "http://localhost/nagios/cgi-bin/cmd.cgi"
username = "nagiosadmin"
password = "nagiospw"
message_matcher = "Type == 'heka.sandbox-output' && Fields[payload_type] == 'nagios-external-command' && Fields[payload_name] == 'PROCESS_SERVICE_CHECK_RESULT'"

Example Lua code to generate a Nagios alert:

output("OK:Alerts are working!")
inject_message("nagios-external-command", "PROCESS_SERVICE_CHECK_RESULT")

CarbonOutput

CarbonOutput plugins parse the “stat metric” messages generated by a
StatAccumulator and write the extracted counter, timer, and gauge data out to
a graphite [http://graphite.wikidot.com/] compatible carbon [http://graphite.wikidot.com/carbon] daemon. Output is written over
a TCP socket using the plaintext [http://graphite.readthedocs.org/en/1.0/feeding-carbon.html#the-plaintext-protocol] protocol.

Parameters:

	
	address (string):

	An IP address:port on which this plugin will write to.
Defaults to: localhost:2003

Example:

[CarbonOutput]
message_matcher = "Type == 'heka.statmetric'"
address = "localhost:2003"

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hekad 0.4.1 documentation

Monitoring Internal State

Heka can emit metrics about it’s internal state to either an outgoing
Heka message (and, through the DashboardOutput, to a web dashboard) or
to stdout.
Sending SIGUSR1 to hekad on a UNIX will send a plain text report
tostdout. On Windows, you will need to send signal
10 to the hekad process using Powershell.

Sample text output

========[heka.all-report]========
inputRecycleChan:
 InChanCapacity: 100
 InChanLength: 99
injectRecycleChan:
 InChanCapacity: 100
 InChanLength: 98
Router:
 InChanCapacity: 50
 InChanLength: 0
 ProcessMessageCount: 26
ProtobufDecoder-0:
 InChanCapacity: 50
 InChanLength: 0
ProtobufDecoder-1:
 InChanCapacity: 50
 InChanLength: 0
ProtobufDecoder-2:
 InChanCapacity: 50
 InChanLength: 0
ProtobufDecoder-3:
 InChanCapacity: 50
 InChanLength: 0
DecoderPool-ProtobufDecoder:
 InChanCapacity: 4
 InChanLength: 4
OpsSandboxManager:
 InChanCapacity: 50
 InChanLength: 0
 MatchChanCapacity: 50
 MatchChanLength: 0
 MatchAvgDuration: 0
 ProcessMessageCount: 0
hekabench_counter:
 InChanCapacity: 50
 InChanLength: 0
 MatchChanCapacity: 50
 MatchChanLength: 0
 MatchAvgDuration: 445
 ProcessMessageCount: 0
 InjectMessageCount: 0
 Memory: 20644
 MaxMemory: 20644
 MaxInstructions: 18
 MaxOutput: 0
 ProcessMessageAvgDuration: 0
 TimerEventAvgDuration: 78532
LogOutput:
 InChanCapacity: 50
 InChanLength: 0
 MatchChanCapacity: 50
 MatchChanLength: 0
 MatchAvgDuration: 406
DashboardOutput:
 InChanCapacity: 50
 InChanLength: 0
 MatchChanCapacity: 50
 MatchChanLength: 0
 MatchAvgDuration: 336
========

To enable the HTTP interface, you will need to enable the
dashboard output plugin, see DashboardOutput.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hekad 0.4.1 documentation

Extending Heka

The core of the Heka engine is written in the Go [http://golang.org]
programming language. Heka supports four different types of plugins (inputs,
decoders, filters, and outputs), which are also written in Go. This document
will try to provide enough information for developers to extend Heka by
implementing their own custom plugins. It assumes a small amount of
familiarity with Go, although any reasonably experienced programmer will
probably be able to follow along with no trouble.

NOTE: Heka also supports the use of Lua [http://www.lua.org] for
dynamically loaded, security sandboxed filter plugins. This document only
covers the use of Go plugins. You can learn more about sandboxed plugins in
the Sandbox section.

Definitions

You should be familiar with the Glossary terminology before proceeding.

Overview

Each Heka plugin type performs a specific task: inputs receive input from the
outside world and inject the data into the Heka pipeline, decoders turn binary
data into Message objects that Heka can process, filters perform arbitrary
processing of Heka message data, and outputs send data from Heka back to the
outside world. Each specific plugin has some custom behaviour, but it also
shares behaviour w/ every other plugin of that type. A UDPInput and a TCPInput
listen on the network differently, and a LogFileInput (reading logs off the
file system) doesn’t listen on the network at all, but all of these inputs
need to interact w/ the Heka system to access data structures, gain access to
decoders to which we pass our incoming data, respond to shutdown and other
system events, etc.

To support this, each Heka plugin actually consists of two parts: the plugin
itself, and an accompanying “plugin runner”. Inputs have an InputRunner,
decoders have a DecoderRunner, filters have a FilterRunner, and Outputs have
an OutputRunner. The plugin itself contains the plugin-specific behaviour, and
is provided by the plugin developer. The plugin runner contains the shared (by
type) behaviour, and is provided by Heka. When Heka starts a plugin, it a)
creates and configures a plugin instance of the appropriate type, b) creates a
plugin runner instance of the appropriate type (passing in the plugin), and c)
calls the Start method of the plugin runner. Most plugin runners (excepting
decoders) then call the plugin’s Run method, passing themselves and an
additional PluginHelper object in as arguments so the plugin code can use
their exposed APIs to interact w/ the Heka system.

For inputs, filters, and outputs, there’s a 1:1 correspondence between
sections specified in the config file and running plugin instances. This is
not the case for decoders, however; a pool of decoder instances are created so
that messages from different sources can be decoded in parallel. Plugins can
gain access to a set of running decoders using the DecoderSet method of the
provided PluginHelper.

Plugin Configuration

Heka uses TOML [https://github.com/mojombo/toml] as its configuration file
format (see: Configuring hekad), and provides a simple mechanism through
which plugins can integrate with the configuration loading system to
initialize themselves from settings in hekad’s config file.

The minimal shared interface that a Heka plugin must implement in order to use
the config system is (unsurprisingly) Plugin, defined in pipeline_runner.go [https://github.com/mozilla-services/heka/blob/master/pipeline/pipeline_runner.go]:

type Plugin interface {
 Init(config interface{}) error
}

During Heka initialization an instance of every input, filter, and output
plugin (and many instances of every decoder) listed in the configuration file
will be created. The TOML configuration for each plugin will be parsed and the
resulting configuration object will be passed in to the above specified Init
method. The argument is of type interface{}; by default the underlying type
will be *pipeline.PluginConfig, a map object that provides config data as
key/value pairs. There is also a way for plugins to specify a custom struct to
be used instead of the generic PluginConfig type (see
Custom Plugin Config Structs). In either case, the config object will be
already loaded with values read in from the TOML file, which your plugin code
can then use to initialize itself.

As an example, imagine we’re writing a filter that will deliver messages to a
specific output plugin, but only if they come from a list of approved hosts.
Both ‘hosts’ and ‘output’ would be required in the plugin’s config section.
Here’s one version of what the plugin definition and Init method might look
like:

type HostFilter struct {
 hosts map[string]bool
 output string
}

// Extract hosts value from config and store it on the plugin instance.
func (f *HostFilter) Init(config interface{}) error {
 var (
 hostsConf interface{}
 hosts []interface{}
 host string
 outputConf interface{}
 ok bool
)
 conf := config.(pipeline.PluginConfig)
 if hostsConf, ok = conf["hosts"]; !ok {
 return errors.New("No 'hosts' setting specified.")
 }
 if hosts, ok = hostsConf.([]interface{}); !ok {
 return errors.New("'hosts' setting not a sequence.")
 }
 if outputConf, ok = conf["output"]; !ok {
 return errors.New("No 'output' setting specified.")
 }
 if f.output, ok = outputConf.(string); !ok {
 return errors.New("'output' setting not a string value.")
 }
 f.hosts = make(map[string]bool)
 for _, h := range hosts {
 if host, ok = h.(string); !ok {
 return errors.New("Non-string host value.")
 }
 f.hosts[host] = true
 }
 return nil
}

(Note that this is a bit of a contrived example. In practice, you would
generally route messages to specific outputs using the
Message Matcher Syntax.)

Restarting Plugins

In the event that your plugin fails to initialize properly at startup,
hekad will exit. However, once hekad is running, if a plugin should
fail (perhaps because a network connection dropped, a file became
unavailable, etc), then hekad will shutdown. This shutdown can be
avoided if your plugin supports being restarted.

To add restart support to your plugin, the Restarting interface
defined in the config.go [https://github.com/mozilla-services/heka/blob/master/pipeline/config.go]
file:

type Restarting interface {
 CleanupForRestart()
}

A plugin that implements this interface will not trigger shutdown
should it fail while hekad is running. The CleanupForRestart method
will be called when the plugins’ main run method exits, a single time.
Then the runner will repeatedly call the plugins Init method until it
initializes successfully. It will then resume running it unless it
exits again at which point the restart process will begin anew.

Custom Plugin Config Structs

In simple cases it might be fine to get plugin configuration data as a generic
map of keys and values, but if there are more than a couple of config settings
then checking for, extracting, and validating the values quickly becomes a lot
of work. Heka plugins can instead specify a schema struct for their
configuration data, into which the TOML configuration will be decoded.

Plugins that wish to provide a custom configuration struct should implement
the HasConfigStruct interface defined in the config.go [https://github.com/mozilla-services/heka/blob/master/pipeline/config.go]
file:

type HasConfigStruct interface {
 ConfigStruct() interface{}
}

Any plugin that implements this method should return a struct that can act as
the schema for the plugin configuration. Heka’s config loader will then try to
decode the plugin’s TOML config into this struct. Note that this also gives
you a way to specify default config values; you just populate your config
struct as desired before returning it from the ConfigStruct method.

Let’s say we wanted to write a UdpOutput that delivered messages to a UDP
listener somewhere, defaulting to using my.example.com:44444 as the
destination. The initialization code might look as follows:

// This is our plugin struct.
type UdpOutput struct {
 conn net.Conn
}

// This is our plugin's config struct
type UdpOutputConfig struct {
 Address string
}

// Provides pipeline.HasConfigStruct interface.
func (o *UdpOutput) ConfigStruct() interface{} {
 return &UdpOutputConfig{"my.example.com:44444"}
}

// Initialize UDP connection
func (o *UdpOutput) Init(config interface{}) (err error) {
 conf := config.(*UdpOutputConfig) // assert we have the right config type
 var udpAddr *net.UDPAddr
 if udpAddr, err = net.ResolveUDPAddr("udp", conf.Address); err != nil {
 return fmt.Errorf("can't resolve %s: %s", conf.Address,
 err.Error())
 }
 if o.conn, err = net.DialUDP("udp", nil, udpAddr); err != nil {
 return fmt.Errorf("error dialing %s: %s", conf.Address,
 err.Error())
 }
 return
}

In addition to specifying configuration options that are specific to your
plugin, it is also possible to use the config struct to specify default values
for the ticker_interval and message_matcher values that are available to
all Filter and Output plugins. If a config struct contains a uint attribute
called TickerInterval, that will be used as a default ticker interval value
(in seconds) if none is supplied in the TOML. Similarly, if a config struct
contains a string attribute called MessageMatcher, that will be used as the
default message routing rule if none is specified in the configuration file.

There is an optional configuration interface called WantsName. It provides a
a plug-in access to its configured name before the runner has started. The
Sandbox filter plug-in uses the name to locate/load any preserved state
before being run.

	type WantsName interface {

	SetName(name string)

}

Inputs

Input plugins are responsible for acquiring data from the outside world and
injecting this data into the Heka pipeline. An input might be passively
listening for incoming network data or actively scanning external sources
(either on the local machine or over a network). The input plugin interface
is:

type Input interface {
 Run(ir InputRunner, h PluginHelper) (err error)
 Stop()
}

The Run method is called when Heka starts and, if all is functioning as
intended, should not return until Heka is shut down. If a condition arises
such that the input can not perform its intended activity it should return
with an appropriate error, otherwise it should continue to run until a
shutdown event is triggered by Heka calling the input’s Stop method, at
which time any clean-up should be done and a clean shutdown should be
indicated by returning a nil error.

Inside the Run method, an input has three primary responsibilities:

	Acquire information from the outside world

	Use acquired information to populate PipelinePack objects that can be
processed by Heka.

	Pass the populated PipelinePack objects on to the appropriate next stage
in the Heka pipeline (either to a decoder plugin so raw input data can be
converted to a Message object, or by injecting them directly into the
Heka message router if the Message object is already populated.)

The details of the first step are clearly entirely defined by the plugin’s
intended input mechanism(s). Plugins can (and should!) spin up goroutines as
needed to perform tasks such as listening on a network connection, making
requests to external data sources, scanning machine resources and operational
characteristics, reading files from a file system, etc.

For the second step, before you can populate a PipelinePack object you have
to actually have one. You can get empty packs from a channel provided to you
by the InputRunner. You get the channel itself by calling ir.InChan() and
then pull a pack from the channel whenever you need one.

Often, populating a PipelinePack is as simple as storing the raw data that
was retrieved from the outside world in the pack’s MsgBytes attribute. For
efficiency’s sake, it’s best to write directly into the already allocated
memory rather than overwriting the attribute with a []byte slice pointing to
a new array. Overwriting the array is likely to lead to a lot of garbage
collector churn.

The third step involves the input plugin deciding where next to pass the
PipelinePack and then doing so. Once the MsgBytes attribute has been set
the pack will typically be passed on to a decoder plugin, which will convert
the raw bytes into a Message object, also an attribute of the
PipelinePack. An input can gain access to the decoders that are available by
calling PluginHelper.DecoderSet(), which can be used to access decoders
either by the name they have been registered as in the config, or by the Heka
protocol’s encoding header they have been specified as decoding.

It is up to the input to decide which decoder should be used. Once the decoder
has been determined and fetched from the DecoderSet the input should call
decoder.InChan() to fetch the input channel upon which the PipelinePack
can be placed.

Sometimes the input itself might wish to decode the data, rather than
delegating that job to a separate decoder. In this case the input can directly
populate the pack.Message and set the pack.Decoded value as true, as a
decoder would do. Decoded messages are then injected into Heka’s routing
system by calling InputRunner.Inject(pack). The message will then be
delivered to the appropriate filter and output plugins.

One final important detail: if for any reason your input plugin should pull a
PipelinePack off of the input channel and not end up passing it on to
another step in the pipeline (i.e. to a decoder or to the router), you must
call PipelinePack.Recycle() to free the pack up to be used again. Failure to
do so will cause the PipelinePack pool to be depleted and will cause Heka to
freeze.

Decoders

Decoder plugins are responsible for converting raw bytes containing message
data into actual Message struct objects that the Heka pipeline can process.
As with inputs, the Decoder interface is quite simple:

type Decoder interface {
 Decode(pack *PipelinePack) error
}

There are two optional Decoder interfaces. The first provides the Decoder
access to its DecoderRunner object when it is started.

	type WantsDecoderRunner interface {

	SetDecoderRunner(dr DecoderRunner)

}

The second provides a notification to the Decoder when the DecoderRunner is
exiting.

	type WantsDecoderRunnerShutdown interface {

	Shutdown()

}

A decoder’s Decode method should extract the raw message data from
pack.MsgBytes and attempt to deserialize this and use the contained
information to populate the Message struct pointed to by the pack.Message
attribute. Again, to minimize GC churn, take care to reuse the already
allocated memory rather than creating new objects and overwriting the existing
ones.

If the message bytes are decoded successfully then Decode should return
nil. If not, then an appropriate error should be returned, in which case the
error message will be logged and the message will be dropped, no further
pipeline processing will occur.

Filters

Filter plugins are the message processing engine of the Heka system. They are
used to examine and process message contents, and trigger events based on
those contents in real time as messages are flowing through the Heka system.

The filter plugin interface is just a single method:

type Filter interface {
 Run(r FilterRunner, h PluginHelper) (err error)
}

Like input plugins, filters have a Run method which accepts a runner and a
helper, and which should not return until shutdown unless there’s an error
condition. And like input plugins, filters should call runner.InChan() to
gain access to the plugin’s input channel.

The similarities end there, however. A filter’s input channel provides
pointers to PipelinePack objects, defined in pipeline_runner.go [https://github.com/mozilla-services/heka/blob/master/pipeline/pipeline_runner.go]

The Pack contains a fully decoded Message object from which the
filter can extract any desired information.

Upon processing a message, a filter plugin can perform any of three tasks:

	Pass the original message through unchanged to one or more specific
alternative Heka filter or output plugins.

	Generate one or more new messages, which can be passed to either a
specific set of Heka plugins, or which can be handed back to the router to
be checked against all registered plugins’ message_matcher rules.

	Nothing (e.g. when performing counting / aggregation / roll-ups).

To pass a message through unchanged, a filter can call PluginHelper.Filter()
or PluginHelper.Output() to access a filter or output plugin, and then call
that plugin’s Deliver() method, passing in the PipelinePack.

To generate new messages, your filter must call
PluginHelper.PipelinePack(msgLoopCount int). The msgloopCount value to be
passed in should be obtained from the MsgLoopCount value on the
PipelinePack that you’re already holding, or possibly zero if the new
message is being triggered by a timed ticker instead of an incoming message.
The PipelinePack method will either return a pack ready for you to populate
or nil if the loop count is greater than the configured maximum value, as a
safeguard against inadvertently creating infinite message loops.

Once a PipelinePack has been obtained, a filter plugin can populate its
Message object. The pack can then be passed along to a specific plugin (or
plugins) as above. Alternatively, the pack can be injected into the Heka
message router queue, where it will be checked against all plugin message
matchers, by passing it to the FilterRunner.Inject(pack *PipelinePack)
method. Note that, again as a precaution against message looping, a plugin
will not be allowed to inject a message which would get a positive response
from that plugin’s own matcher.

Sometimes a filter will take a specific action triggered by a single incoming
message. There are many cases, however, when a filter is merely collecting or
aggregating data from the incoming messages, and instead will be sending out
reports on the data that has been collected at specific intervals. Heka has
built-in support for this use case. Any filter (or output) plugin can include
a ticker_interval config setting (in seconds, integers only), which will
automatically be extracted by Heka when the configuration is loaded. Then from
within your plugin code you can call FilterRunner.Ticker() and you will get
a channel (type <-chan time.Time) that will send a tick at the specified
interval. Your plugin code can listen on the ticker channel and take action as
needed.

Observant readers might have noticed that, unlike the Input interface,
filters don’t need to implement a Stop method. Instead, Heka will
communicate a shutdown event to filter plugins by closing the input channel
from which the filter is receiving the PipelinePack objects. When this
channel is closed, a filter should perform any necessary clean-up and then
return from the Run method with a nil value to indicate a clean exit.

Finally, there is one very important point that all authors of filter plugins
should keep in mind: if you are not passing your received PipelinePack
object on to another filter or output plugin for further processing, then you
must call PipelinePack.Recycle() to tell Heka that you are through with
the pack. Failure to do so will cause Heka to not free up the packs for reuse,
exhausting the supply and eventually causing the entire pipeline to freeze.

Outputs

Finally we come to the output plugins, which are responsible for receiving
Heka messages and using them to generate interactions with the outside world.
The Output interface is nearly identical to the Filter interface:

type Output interface {
 Run(or OutputRunner, h PluginHelper) (err error)
}

In fact, there is very little difference between filter and output plugins,
other than tasks that they will be performing. Like filters, outputs should
call the InChan method on the provided runner to get an input channel, which
will feed PipelinePack objects. Like filters, outputs should listen on this
channel until it is closed, at which time they should perform any necessary
clean-up and thenreturn. And, like filters, any output plugin with a
ticker_interval value in the configuration will use that value to create a
ticker channel that can be accessed using the runner’s Ticker method. And,
finally, outputs should also be sure to call PipelinePack.Recycle() when
they finish w/ a pack so that Heka knows the pack is freed up for reuse.

Registering Your Plugin

The last step you have to take after implementing your plugin is to register
it with hekad so it can actually be configured and used. You do this by
calling the pipeline package’s RegisterPlugin function:

func RegisterPlugin(name string, factory func() interface{})

The name value should be a unique identifier for your plugin, and it should
end in one of “Input”, “Decoder”, “Filter”, or “Output”, depending on the
plugin type.

The factory value should be a function that returns an instance of your
plugin, usually a pointer to a struct, where the pointer type implements the
Plugin interface and the interface appropriate to its type (i.e. Input,
Decoder, Filter, or Output).

This sounds more complicated than it is. Here are some examples from Heka
itself:

RegisterPlugin("UdpInput", func() interface{} {return new(UdpInput)})
RegisterPlugin("TcpInput", func() interface{} {return new(TcpInput)})
RegisterPlugin("ProtobufDecoder", func() interface{} {return new(ProtobufDecoder)})
RegisterPlugin("CounterFilter", func() interface{} {return new(CounterFilter)})
RegisterPlugin("StatFilter", func() interface{} {return new(StatFilter)})
RegisterPlugin("LogOutput", func() interface{} {return new(LogOutput)})
RegisterPlugin("FileOutput", func() interface{} {return new(FileOutput)})

It is recommended that RegisterPlugin calls be put in your Go package’s
init() function [http://golang.org/doc/effective_go.html#init] so that you
can simply import your package when building hekad and the package’s plugins
will be registered and available for use in your Heka config file. This is
made a bit easier if you use `plugin_loader.cmake`_, see
Building hekad with External Plugins.

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hekad 0.4.1 documentation

Message Matcher Syntax

Message matching is done by the hekad router to choose an appropriate
filter(s) to run. Every filter that matches will get a copy of the
message.

Examples

	Type == “test” && Severity == 6

	(Severity == 7 || Payload == “Test Payload”) && Type == “test”

	Fields[foo] != “bar”

	Fields[foo][1][0] == ‘alternate’

	Fields[MyBool] == TRUE

	TRUE

	Fields[created] =~ /%TIMESTAMP%/

Relational Operators

	== equals

	!= not equals

	> greater than

	>= greater than equals

	< less than

	<= less than equals

	=~ regular expression match

	!~ regular expression negated match

Logical Operators

	Parentheses are used for grouping expressions

	&& and (higher precedence)

	|| or

Boolean

	TRUE

	FALSE

Message Variables

	All message variables must be on the left hand side of the relational
comparison

	
	String

	
	Uuid

	Type

	Logger

	Payload

	EnvVersion

	Hostname

	
	Numeric

	
	Timestamp

	Severity

	Pid

	
	Fields

	
	Fields[_field_name_] (shorthand for Field[_field_name_][0][0])

	Fields[_field_name_][_field_index_] (shorthand for Field[_field_name_][_field_index_][0])

	Fields[_field_name_][_field_index_][_array_index_]

	If a field type is mis-match for the relational comparison, false will be returned i.e. Fields[foo] == 6 where ‘foo’ is a string

Quoted String

	single or double quoted strings are allowed

	must be placed on the right side of a relational comparison i.e. Type == ‘test’

Regular Expression String

	enclosed by forward slashes

	must be placed on the right side of the relational comparison i.e. Type =~ /test/

	capture groups will be ignored

Regular Expression Helpers

Commonly used complex regular expressions are provide as template
variables in the form of %TEMPLATE%.

i.e., Fields[created] =~ /%TIMESTAMP%/

Available templates
- TIMESTAMP - matches most common date/time string formats

See also

Regular Expression re2 syntax [http://code.google.com/p/re2/wiki/Syntax]

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	hekad 0.4.1 documentation

Sandbox

Sandboxes are Heka plugins that are implemented in a sandboxed scripting
language. They provide a dynamic and isolated execution environment
for data parsing, transformation, and analysis. They allow real time access to
data in production without jeopardizing the integrity or performance of the
monitoring infrastructure and do not require Heka to be recompiled.
This broadens the audience that the data can be exposed to and facilitates new
uses of the data (i.e. debugging, monitoring, dynamic provisioning, SLA
analysis, intrusion detection, ad-hoc reporting, etc.)

Features

	
	dynamic loading

	
	SandboxFilters can be started/stopped on a self-service basis while Heka is running

	SandboxDecoder can only be started/stopped on a Heka restart but no recompilation is required to add new functionality.

	small - memory requirements are about 16 KiB for a basic sandbox

	fast - microsecond execution times

	stateful - ability to resume where it left off after a restart/reboot

	isolated - failures are contained and malfunctioning sandboxes are terminated

Sandbox Decoder

The sandbox decoder provides an isolated execution environment for data parsing
and complex transformations without the need to recompile Heka.

SandboxDecoder Settings

	
	script_type (string):

	The language the sandbox is written in. Currently the only valid option is ‘lua’.

	
	filename (string):

	The path to the sandbox code; if specified as a relative path it will be appended to Heka’s global base_dir.

	
	memory_limit (uint):

	The number of bytes the sandbox is allowed to consume before being terminated (max 8MiB, default max).

	
	instruction_limit (uint):

	The number of instructions the sandbox is allowed the execute during the process_message function before being terminated (max 1M, default max).

	
	output_limit (uint):

	The number of bytes the sandbox output buffer can hold before before being terminated (max 63KiB, default max). Anything less than 1KiB will default to 1KiB.

	
	config (object):

	A map of configuration variables available to the sandbox via read_config. The map consists of a string key with: string, bool, int64, or float64 values.

Example

[sql_decoder]
type = "SandboxDecoder"
script_type = "lua"
filename = "sql_decoder.lua"

Sandbox Filter

The sandbox filter provides an isolated execution environment for data analysis.
The output generated by the sandbox is injected into the payload of a new
message for further processing or to be output.

SandboxFilter Settings

	Common Filter / Output Parameters

	
	script_type (string):

	The language the sandbox is written in. Currently the only valid option is ‘lua’.

	
	filename (string):

	For a static configuration this is the path to the sandbox code; if specified as a relative path it will be appended to Heka’s global base_dir. The filename must be unique between static plugins, since the global data is preserved using this name. For a dynamic configuration the filename is ignored and the the physical location on disk is controlled by the SandboxManagerFilter.

	
	preserve_data (bool):

	True if the sandbox global data should be preserved/restored on Heka shutdown/startup. The preserved data is stored along side the sandbox code i.e. counter.lua.data so Heka must have read/write permissions to that directory.

	
	memory_limit (uint):

	The number of bytes the sandbox is allowed to consume before being terminated (max 8MiB, default 32767).

	
	instruction_limit (uint):

	The number of instructions the sandbox is allowed the execute during the process_message/timer_event functions before being terminated (max 1M, default 1000).

	
	output_limit (uint):

	The number of bytes the sandbox output buffer can hold before before being terminated (max 63KiB, default 1024). Anything less than 1KiB will default to 1KiB.

	
	profile (bool):

	When true a statistically significant number of ProcessMessage timings are immediately captured before reverting back to the regular sampling interval. The main purpose is for more accurate sandbox comparison/tuning/optimization.

	
	config (object):

	A map of configuration variables available to the sandbox via read_config. The map consists of a string key with: string, bool, int64, or float64 values.

Example

[hekabench_counter]
type = "SandboxFilter"
message_matcher = "Type == 'hekabench'"
ticker_interval = 1
script_type = "lua"
filename = "counter.lua"
preserve_data = true
memory_limit = 32767
instruction_limit = 1000
output_limit = 1024
profile = false

[hekabench_counter.config]
rows = 1440
sec_per_row = 60

Sandbox Manager

The SandboxManagerFilter allows SandboxFilters to be dynamically started and
stopped using a signed Heka message. The intent is to have one
manager per access control group each with their own message signing key. Users
in each group can submit a signed control message to manage any filters running
under the associated manager. A signed message is not an enforced requirement
but it is highly recommended in order to restrict access to this functionality.

SandboxManagerFilter Settings

	Common Filter / Output Parameters

	
	working_directory (string):

	The directory where the filter configurations, code, and states are preserved. The directory can be unique or shared between sandbox managers since the filter names are unique per manager. Defaults to a directory in ${BASE_DIR}/sbxmgrs with a name generated from the plugin name.

	
	max_filters (uint):

	The maximum number of filters this manager can run.

Example

[OpsSandboxManager]
type = "SandboxManagerFilter"
message_signer = "ops"
message_matcher = "Type == 'heka.control.sandbox'"
max_filters = 100

Control Message

The sandbox manager control message is a regular Heka message with the following
variables set to the specified values.

Starting a SandboxFilter

	Type: “heka.control.sandbox”

	Payload: sandbox code

	Fields[action]: “load”

	Fields[config]: the TOML configuration for the SandboxFilter SandboxFilter Settings

Stopping a SandboxFilter

	Type: “heka.control.sandbox”

	Fields[action]: “unload”

	Fields[name]: The SandboxFilter name specified in the configuration

sbmgr

Sbmgr is a tool for managing (starting/stopping) sandbox filters by generating
the control messages defined above.

Command Line Options

sbmgr [-config config_file] [-action load|unload] [-filtername specified on unload]
[-script sandbox script filename] [-scriptconfig sandbox script configuration filename]

sbmgrload

Sbmgrload is a test tool for starting/stopping a large number of sandboxes. The
script and configuration are built into the tool and the filters will be named:
CounterSandboxN where N is the instance number.

Command Line Options

sbmgrload [-config config_file] [-action load|unload] [-num number of sandbox instances]

Configuration Variables

	ip_address (string): IP address of the Heka server.

	
	signer (object): Signer information for the encoder.

	
	name (string): The name of the signer.

	hmac_hash (string): md5 or sha1

	hmac_key (string): The key the message will be signed with.

	version (int): The version number of the hmac_key.

Example

ip_address = "127.0.0.1:5565"
[signer]
 name = "test"
 hmac_hash = "md5"
 hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
 version = 0

Tutorial - How to use the dynamic sandboxes

SandboxManager/Heka Setup

1. The SandboxManagerFilters are defined in the hekad configuration file and
are created when hekad starts. The manager provides a location/namespace for
SandboxFilters to run and controls access to this space via a signed Heka
message. By associating a message_signer with the manager we can restrict
who can load and unload the associated filters. Lets start by
configuring a SandboxManager for a specific set of users; platform developers.
Choose a unique filter name [PlatformDevs] and a signer name
“PlatformDevs”, in this case we will use the same name for each.

[PlatformDevs]
type = "SandboxManagerFilter"
message_signer = "PlatformDevs"
message_matcher = "Type == 'heka.control.sandbox'"
working_directory = "/var/heka/sandbox"
max_filters = 100

2. Configure the input that will receive the SandboxManager control messages.
For this setup we will extend the current TCP input to handle our signed
messages. The signer section consists of the signer name followed by an
underscore and the key version number (the reason for this notation is to
simply flatten the signer configuration structure into a single map). Multiple
key versions are allowed to be active at the same time facilitating the rollout
of new keys.

[TCP:5565]
type = "TcpInput"
address = ":5565"
 [TCP:5565.signer.PlatformDevs_0]
 hmac_key = "Old Platform devs signing key"
 [TCP:5565.signer.PlatformDevs_1]
 hmac_key = "Platform devs signing key"

3. Configure the sandbox manager utility (sbmgr). The signer information must
exactly match the values in the input configuration above otherwise the
messages will be discarded. Save the file as PlatformDevs.toml.

ip_address = ":5565"
[signer]
 name = "PlatformDevs"
 hmac_hash = "md5"
 hmac_key = "Platform devs signing key"
 version = 1

SandboxFilter Setup

	Create a SandboxFilter script and save it as “example.lua”. See Lua Sandbox Tutorial for more detail.

data = circular_buffer.new(1440, 1, 60) -- message count per minute
local COUNT = data:set_header(1, "Messages", "count")
function process_message ()
 local ts = read_message("Timestamp")
 data:add(ts, COUNT, 1)
 return 0
end

function timer_event(ns)
 output(data)
 inject_message("cbuf")
end

	Create the SandboxFilter configuration and save it as “example.toml”.

The only difference between a static and dynamic SandboxFilter configuration is
the filename. In the dynamic configuration it can be left blank or left out
entirely. The manager will assign the filter a unique system wide name, in
this case, “PlatformDevs-Example”.

[Example]
type = "SandboxFilter"
message_matcher = "Type == 'Widget'"
ticker_interval = 60
script_type = "lua"
filename = ""
preserve_data = false
memory_limit = 64000
instruction_limit = 100
output_limit = 64000

	Load the filter using sbmgr.

sbmgr -action=load -config=PlatformDevs.toml -script=example.lua -scriptconfig=example.toml

If you are running the DashboardOutput the following links are
available:

	Information about the running filters: http://localhost:4352/heka_report.html.

	Graphical Output (after 1 minute in this case): http://localhost:4352/PlatformDevs-Example.html

Otherwise

	Information about the terminated filters: http://localhost:4352/heka_sandbox_termination.html.

Note

A running filter cannot be ‘reloaded’ it must be unloaded and loaded again.
The state is not preserved in this case for two reasons (in the future we
hope to remedy this):

	During the unload/load process some data can be missed creating a small gap in the analysis causing anomalies and confusion.

	The internal data representation may have changed and restoration may be problematic.

	Unload the filter using sbmgr

sbmgr -action=unload -config=PlatformDevs.toml -filtername=Example

Lua Sandbox

The Lua sandbox provides full access to the Lua language in a
sandboxed environment under hekad that enforces configurable
restrictions.

See also

Lua Reference Manual [http://www.lua.org/manual/5.1/]

API

Functions that must be exposed from the Lua sandbox

	int process_message()

	Called by Heka when a message is available to the sandbox. The
instruction_limit configuration parameter is applied to this function call.

	Arguments

	none

	Return

	
	< 0 for non-fatal failure (increments ProcessMessageFailures)

	0 for success

	> 0 for fatal error (terminates the sandbox)

	timer_event(ns)

	Called by Heka when the ticker_interval expires. The instruction_limit
configuration parameter is applied to this function call. This function
is only required in SandboxFilters (SandboxDecoders do not support timer
events).

	Arguments

	
	ns (int64) current time in nanoseconds since the UNIX epoch

	Return

	none

Heka functions that are exposed to the Lua sandbox

	read_config(variableName)

	Provides access to the sandbox configuration variables.

	Arguments

	
	variableName (string)

	Return

	number, string, bool, nil depending on the type of variable requested

	read_message(variableName, fieldIndex, arrayIndex)

	Provides access to the Heka message data.

	Arguments

	
	
	variableName (string)

	
	Uuid

	Type

	Logger

	Payload

	EnvVersion

	Hostname

	Timestamp

	Severity

	Pid

	Fields[_name_]

	
	fieldIndex (unsigned) only used in combination with the Fields variableName

	
	use to retrieve a specific instance of a repeated field _name_

	
	arrayIndex (unsigned) only used in combination with the Fields variableName

	
	use to retrieve a specific element out of a field containing an array

	Return

	number, string, bool, nil depending on the type of variable requested

	output(arg0, arg1, ...argN)

	Appends data to the payload buffer, which cannot exceed the output_limit
configuration parameter.

	Arguments

	
	arg (number, string, bool, nil, table, circular_buffer) Lua variable or literal to be appended the output buffer

	Return

	none

Notes

	Outputting a Lua table will serialize it to JSON according to the following guidelines/restrictions:

	
	Tables cannot contain internal of circular references.

	
	Keys starting with an underscore are considered private and will not be serialized.

	
	‘_name’ is a special private key that can be used to specify the the name of the top level JSON object, if not provided the default is ‘table’.

	Arrays only use contiguous numeric keys starting with an index of 1. Private keys are the exception i.e. local a = {1,2,3,_name=”my_name”} will be serialized as: {"my_name":[1,2,3]}\n

	Hashes only use string keys (numeric keys will not be quoted and the JSON output will be invalid). Note: the hash keys are output in an arbitrary order i.e. local a = {x = 1, y = 2} will be serialized as: {"table":{"y":2,"x":1}}\n.

In most cases circular buffers should be directly output using inject_message. However, in order to create graph annotations the annotation table has to be written to the output buffer followed by the circular buffer. The output function is the only way to combine this data before injection (use a unique payload_type when injecting a message with a non-standard circular buffer mashups).

	inject_message(payload_type, payload_name)

	Creates a new Heka message using the contents of the output payload buffer
and then clears the buffer. Two pieces of optional metadata are allowed and
included as fields in the injected message i.e., Fields[payload_type] == ‘csv’
Fields[payload_name] == ‘Android Usage Statistics’. The number of messages
that may be injected by the process_message or timer_event functions are
globally controlled by the hekad Command Line Options; if
these values are exceeded the sandbox will be terminated.

	Arguments

	
	payload_type (optional, default “txt” string) Describes the content type of the injected payload data.

	payload_name (optional, default “” string) Names the content to aid in downstream filtering.

	Return

	none

	inject_message(circular_buffer, payload_name)

	Creates a new Heka message placing the circular buffer output in the message payload (overwriting whatever is in the output buffer).
The payload_type is set to the circular buffer output format string. i.e., Fields[payload_type] == ‘cbuf’.
The Fields[payload_name] is set to the provided payload_name.

	Arguments

	
	circular_buffer (circular_buffer)

	payload_name (optional, default “” string) Names the content to aid in downstream filtering.

	Return

	none

	Notes

	
	injection limits are enforced as described above

	inject_message(message_table)

	Creates a new Heka protocol buffer message using the contents of the
specified Lua table (overwriting whatever is in the output buffer).
Notes about message fields:

	Timestamp is automatically generated if one is not provided. Nanosecond since the UNIX epoch is the only valid format.

	UUID is automatically generated, anything provided by the user is ignored.

	Hostname and Logger are automatically set by the SandboxFilter and cannot be overridden.

	Type is prepended with “heka.sandbox.” by the SandboxFilter to avoid data confusion/mis-representation.

	
	Fields can be represented in multiple forms and support the following primitive types: string, double, bool. These constructs should be added to the ‘Fields’ table in the message structure. Note: since the Fields structure is a map and not an array, like the protobuf message, fields cannot be repeated.

	
	name=value i.e., foo=”bar”; foo=1; foo=true

	name={array} i.e., foo={“b”, “a”, “r”}

	
	name={object} i.e. foo={value=1, representation=”s”}; foo={value={1010, 2200, 1567}, representation=”ms”}

	
	value (required) may be a single value or an array of values

	representation (optional) metadata for display and unit management

	Arguments

	
	message_table A table with the proper message structure.

	Return

	none

	Notes

	
	injection limits are enforced as described above

	require(libraryName)

	Loads optional sandbox libraries

	Arguments

	
	
	libraryName (string)

	
	lpeg loads the Lua Parsing Expression Grammar Library http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html

	cjson loaded the cjson.safe module in a global cjson table, exposing the decoding functions only. http://www.kyne.com.au/~mark/software/lua-cjson-manual.html.

	Return

	a table (which is also globally registered with the library name).

Sample Lua Message Structure

{
Uuid = "data", -- always ignored
Logger = "nginx", -- ignored in the SandboxFilter
Hostname = "bogus.mozilla.com", -- ignored in the SandboxFilter

Timestamp = 1e9,
Type = "TEST", -- will become "heka.sandbox.TEST" in the SandboxFilter
Papload = "Test Payload",
EnvVersion = "0.8",
Pid = 1234,
Severity = 6,
Fields = {
 http_status = 200,
 request_size = {value=1413, representation="B"}
 }
}

Lua Circular Buffer Library

The library is a sliding window time series data store and is implemented in
the circular_buffer table.

Constructor

circular_buffer.new(rows, columns, seconds_per_row, enable_delta)

	Arguments

	
	rows (unsigned) The number of rows in the buffer (must be > 1)

	columns (unsigned)The number of columns in the buffer (must be > 0)

	seconds_per_row (unsigned) The number of seconds each row represents (must be > 0).

	enable_delta (optional, default false bool) When true the changes made to the circular buffer between delta outputs are tracked.

	Return

	A circular buffer object.

Methods

Note

All column arguments are 1 based. If the column is out of range for the
configured circular buffer a fatal error is generated.

double add(nanoseconds, column, value)

	Arguments

	
	nanosecond (unsigned) The number of nanosecond since the UNIX epoch. The value is used to determine which row is being operated on.

	column (unsigned) The column within the specified row to perform an add operation on.

	value (double) The value to be added to the specified row/column.

	Return

	The value of the updated row/column or nil if the time was outside the range of the buffer.

double set(nanoseconds, column, value)

	Arguments

	
	nanosecond (unsigned) The number of nanosecond since the UNIX epoch. The value is used to determine which row is being operated on.

	column (unsigned) The column within the specified row to perform a set operation on.

	value (double) The value to be overwritten at the specified row/column.

	Return

	The value passed in or nil if the time was outside the range of the buffer.

double get(nanoseconds, column)

	Arguments

	
	nanosecond (unsigned) The number of nanosecond since the UNIX epoch. The value is used to determine which row is being operated on.

	column (unsigned) The column within the specified row to retrieve the data from.

	Return

	The value at the specifed row/column or nil if the time was outside the range of the buffer.

int set_header(column, name, unit, aggregation_method)

	Arguments

	
	column (unsigned) The column number where the header information is applied.

	name (string) Descriptive name of the column (maximum 15 characters). Any non alpha numeric characters will be converted to underscores. (default: Column_N)

	unit (string - optional) The unit of measure (maximum 7 characters). Alpha numeric, ‘/’, and ‘*’ characters are allowed everything else will be converted to underscores. i.e. KiB, Hz, m/s (default: count)

	
	aggregation_method (string - optional) Controls how the column data is aggregated when combining multiple circular buffers.

	
	sum The total is computed for the time/column (default).

	min The smallest value is retained for the time/column.

	max The largest value is retained for the time/column.

	avg The average is computed for the time/column.

	none No aggregation will be performed the column.

	Return

	The column number passed into the function.

double compute(function, column, start, end)

	Arguments

	
	function (string) The name of the compute function (sum|avg|sd|min|max).

	column (unsigned) The column that the computation is performed against.

	start (optional - unsigned) The number of nanosecond since the UNIX epoch. Sets the start time of the computation range; if nil the buffer’s start time is used.

	end (optional- unsigned) The number of nanosecond since the UNIX epoch. Sets the end time of the computation range (inclusive); if nil the buffer’s end time is used. The end time must be greater than or equal to the start time.

	Return

	The result of the computation for the specifed column over the given range or nil if the range fell outside of the buffer.

	cbuf format(format)

	Sets an internal flag to control the output format of the circular buffer data structure; if deltas are not enabled or there haven’t been any modifications, nothing is output.

	Arguments

	
	
	format (string)

	
	cbuf The circular buffer full data set format.

	cbufd The circular buffer delta data set format.

	Return

	The circular buffer object.

Output

The circular buffer can be passed to the output() function. The output format
can be selected using the format() function.

The cbuf (full data set) output format consists of newline delimited rows
starting with a json header row followed by the data rows with tab delimited
columns. The time in the header corresponds to the time of the first data row,
the time for the other rows is calculated using the seconds_per_row header value.

{json header}
row1_col1\trow1_col2\n
.
.
.
rowN_col1\trowN_col2\n

The cbufd (delta) output format consists of newline delimited rows starting with
a json header row followed by the data rows with tab delimited columns. The
first column is the timestamp for the row (time_t). The cbufd output will only
contain the rows that have changed and the corresponding delta values for each
column.

{json header}
row14_timestamp\trow14_col1\trow14_col2\n
row10_timestamp\trow10_col1\trow10_col2\n

Sample Cbuf Output

{"time":2,"rows":3,"columns":3,"seconds_per_row":60,"column_info":[{"name":"HTTP_200","unit":"count","aggregation":"sum"},{"name":"HTTP_400","unit":"count","aggregation":"sum"},{"name":"HTTP_500","unit":"count","aggregation":"sum"}]}
10002 0 0
11323 0 0
10685 0 0

Example

-- This Source Code Form is subject to the terms of the Mozilla Public
-- License, v. 2.0. If a copy of the MPL was not distributed with this
-- file, You can obtain one at http://mozilla.org/MPL/2.0/.

data = circular_buffer.new(1440, 5, 60) -- 1 day at 1 minute resolution
local HTTP_200 = data:set_header(1, "HTTP_200" , "count")
local HTTP_300 = data:set_header(2, "HTTP_300" , "count")
local HTTP_400 = data:set_header(3, "HTTP_400" , "count")
local HTTP_500 = data:set_header(4, "HTTP_500" , "count")
local HTTP_UNKNOWN = data:set_header(5, "HTTP_UNKNOWN" , "count")

function process_message()
 local ts = read_message("Timestamp")
 local sc = read_message("Fields[http_status_code]")
 if sc == nil then return 0 end

 if sc >= 200 and sc < 300 then
 data:add(ts, HTTP_200, 1)
 elseif sc >= 300 and sc < 400 then
 data:add(ts, HTTP_300, 1)
 elseif sc >= 400 and sc < 500 then
 data:add(ts, HTTP_400, 1)
 elseif sc >= 500 and sc < 600 then
 data:add(ts, HTTP_500, 1)
 else
 data:add(ts, HTTP_UNKNOWN, 1)
 end
 return 0
end

function timer_event()
 output(data)
 inject_message("cbuf", "HTTP Status Code Statistics")
end

Setting the inject_message payload_type to “cbuf” will cause the
DashboardOutput to automatically generate an HTML page
containing a graphical view of the data.

Lua Sandbox Tutorial

How to create a simple sandbox filter

	Implement the required Heka interface in Lua

function process_message ()
 return 0
end

function timer_event(ns)
end

	Add the business logic (count the number of ‘demo’ events per minute)

total = 0 -- preserved between restarts since it is in global scope
local count = 0 -- local scope so this will not be preserved

function process_message()
 total= total + 1
 count = count + 1
 return 0
end

function timer_event(ns)
 output(string.format("%d messages in the last minute; total=%d", count, total))
 count = 0
 inject_message()
end

	Setup the configuration

[demo_counter]
type = "SandboxFilter"
message_matcher = "Type == 'demo'"
ticker_interval = 60
script_type = "lua"
filename = "counter.lua"
preserve_data = true
memory_limit = 32767
instruction_limit = 100
output_limit = 256

4. Extending the business logic (count the number of ‘demo’ events per minute
per device)

device_counters = {}

function process_message()
 local device_name = read_message("Fields[DeviceName]")
 if device_name == nil then
 device_name = "_unknown_"
 end

 local dc = device_counters[device_name]
 if dc == nil then
 dc = {count = 1, total = 1}
 device_counters[device_name] = dc
 else
 dc.count = dc.count + 1
 dc.total = dc.total + 1
 end
 return 0
end

function timer_event(ns)
 output("#device_name\tcount\ttotal\n")
 for k, v in pairs(device_counters) do
 output(string.format("%s\t%d\t%d\n", k, v.count, v.total))
 v.count = 0
 end
 inject_message()
end

	Depending on the number of devices being counted you will most likely want to update the configuration to account for the additional resource requirements.

memory_limit = 65536
instruction_limit = 20000
output_limit = 64512

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	hekad 0.4.1 documentation

Testing Heka

Flood

Flood is a Heka load test tool; it is capable of generating a large number of
messages to exercise Heka using different protocols, message types, and error
conditions.

Command Line Options

flood [-config config_file] [-test config_section_name]

Configuration Variables

	test (object): Name of the test section (toml key) in the configuration file.

	ip_address (string): IP address of the Heka server.

	sender (string): tcp or udp

	pprof_file (string): The name of the file to save the profiling data to.

	encoder (string): protobuf or json

	num_messages (int): The number of messages to be sent, 0 for infinite.

	corrupt_percentage (float): The percentage of messages that will be randomly corrupted.

	signed_percentage (float): The percentage of message that will signed.

	variable_size_messages (bool): True, if a random selection of variable size messages are to be sent. False, if a single fixed message will be sent.

	
	signer (object): Signer information for the encoder.

	
	name (string): The name of the signer.

	hmac_hash (string): md5 or sha1

	hmac_key (string): The key the message will be signed with.

	version (int): The version number of the hmac_key.

	ascii_only (bool): True, if generated message payloads should only contain ASCII characters. False, if message payloads should contain arbitrary binary data. Defaults to false.

Example

[default]
ip_address = "127.0.0.1:5565"
sender = "tcp"
pprof_file = ""
encoder = "protobuf"
num_messages = 0
corrupt_percentage = 0.0001
signed_percentage = 0.00011
variable_size_messages = true
[default.signer]
 name = "test"
 hmac_hash = "md5"
 hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
 version = 0

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	hekad 0.4.1 documentation

Index

 D
 | H
 | M
 | P
 | R

D

 	

 	DecoderPoolSize

H

 	

 	hekad

M

 	

 	Message

 	

 	Message matcher

P

 	

 	Pipeline

 	PipelinePack

 	Plugin

 	PluginChanSize

 	

 	PluginHelper

 	PluginRunner

 	PoolSize

R

 	

 	Router

 Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

 message/index.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

Heka Message

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

sandbox/lua.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

Lua Sandbox

The Lua sandbox provides full access to the Lua language in a
sandboxed environment under hekad that enforces configurable
restrictions.

See also

Lua Reference Manual [http://www.lua.org/manual/5.1/]

API

Functions that must be exposed from the Lua sandbox

		int process_message()

		Called by Heka when a message is available to the sandbox. The
instruction_limit configuration parameter is applied to this function call.

		Arguments

		none

		Return

		
		< 0 for non-fatal failure (increments ProcessMessageFailures)

		0 for success

		> 0 for fatal error (terminates the sandbox)

		timer_event(ns)

		Called by Heka when the ticker_interval expires. The instruction_limit
configuration parameter is applied to this function call. This function
is only required in SandboxFilters (SandboxDecoders do not support timer
events).

		Arguments

		
		ns (int64) current time in nanoseconds since the UNIX epoch

		Return

		none

Heka functions that are exposed to the Lua sandbox

		read_config(variableName)

		Provides access to the sandbox configuration variables.

		Arguments

		
		variableName (string)

		Return

		number, string, bool, nil depending on the type of variable requested

		read_message(variableName, fieldIndex, arrayIndex)

		Provides access to the Heka message data.

		Arguments

		
		
		variableName (string)

		
		Uuid

		Type

		Logger

		Payload

		EnvVersion

		Hostname

		Timestamp

		Severity

		Pid

		Fields[_name_]

		
		fieldIndex (unsigned) only used in combination with the Fields variableName

		
		use to retrieve a specific instance of a repeated field _name_

		
		arrayIndex (unsigned) only used in combination with the Fields variableName

		
		use to retrieve a specific element out of a field containing an array

		Return

		number, string, bool, nil depending on the type of variable requested

		output(arg0, arg1, ...argN)

		Appends data to the payload buffer, which cannot exceed the output_limit
configuration parameter.

		Arguments

		
		arg (number, string, bool, nil, table, circular_buffer) Lua variable or literal to be appended the output buffer

		Return

		none

Notes

		Outputting a Lua table will serialize it to JSON according to the following guidelines/restrictions:

		
		Tables cannot contain internal of circular references.

		
		Keys starting with an underscore are considered private and will not be serialized.

		
		‘_name’ is a special private key that can be used to specify the the name of the top level JSON object, if not provided the default is ‘table’.

		Arrays only use contiguous numeric keys starting with an index of 1. Private keys are the exception i.e. local a = {1,2,3,_name=”my_name”} will be serialized as: {"my_name":[1,2,3]}\n

		Hashes only use string keys (numeric keys will not be quoted and the JSON output will be invalid). Note: the hash keys are output in an arbitrary order i.e. local a = {x = 1, y = 2} will be serialized as: {"table":{"y":2,"x":1}}\n.

In most cases circular buffers should be directly output using inject_message. However, in order to create graph annotations the annotation table has to be written to the output buffer followed by the circular buffer. The output function is the only way to combine this data before injection (use a unique payload_type when injecting a message with a non-standard circular buffer mashups).

		inject_message(payload_type, payload_name)

		Creates a new Heka message using the contents of the output payload buffer
and then clears the buffer. Two pieces of optional metadata are allowed and
included as fields in the injected message i.e., Fields[payload_type] == ‘csv’
Fields[payload_name] == ‘Android Usage Statistics’. The number of messages
that may be injected by the process_message or timer_event functions are
globally controlled by the hekad Command Line Options; if
these values are exceeded the sandbox will be terminated.

		Arguments

		
		payload_type (optional, default “txt” string) Describes the content type of the injected payload data.

		payload_name (optional, default “” string) Names the content to aid in downstream filtering.

		Return

		none

		inject_message(circular_buffer, payload_name)

		Creates a new Heka message placing the circular buffer output in the message payload (overwriting whatever is in the output buffer).
The payload_type is set to the circular buffer output format string. i.e., Fields[payload_type] == ‘cbuf’.
The Fields[payload_name] is set to the provided payload_name.

		Arguments

		
		circular_buffer (circular_buffer)

		payload_name (optional, default “” string) Names the content to aid in downstream filtering.

		Return

		none

		Notes

		
		injection limits are enforced as described above

		inject_message(message_table)

		Creates a new Heka protocol buffer message using the contents of the
specified Lua table (overwriting whatever is in the output buffer).
Notes about message fields:

		Timestamp is automatically generated if one is not provided. Nanosecond since the UNIX epoch is the only valid format.

		UUID is automatically generated, anything provided by the user is ignored.

		Hostname and Logger are automatically set by the SandboxFilter and cannot be overridden.

		Type is prepended with “heka.sandbox.” by the SandboxFilter to avoid data confusion/mis-representation.

		
		Fields can be represented in multiple forms and support the following primitive types: string, double, bool. These constructs should be added to the ‘Fields’ table in the message structure. Note: since the Fields structure is a map and not an array, like the protobuf message, fields cannot be repeated.

		
		name=value i.e., foo=”bar”; foo=1; foo=true

		name={array} i.e., foo={“b”, “a”, “r”}

		
		name={object} i.e. foo={value=1, representation=”s”}; foo={value={1010, 2200, 1567}, representation=”ms”}

		
		value (required) may be a single value or an array of values

		representation (optional) metadata for display and unit management

		Arguments

		
		message_table A table with the proper message structure.

		Return

		none

		Notes

		
		injection limits are enforced as described above

		require(libraryName)

		Loads optional sandbox libraries

		Arguments

		
		
		libraryName (string)

		
		lpeg loads the Lua Parsing Expression Grammar Library http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html

		cjson loaded the cjson.safe module in a global cjson table, exposing the decoding functions only. http://www.kyne.com.au/~mark/software/lua-cjson-manual.html.

		Return

		a table (which is also globally registered with the library name).

Sample Lua Message Structure

{
Uuid = "data", -- always ignored
Logger = "nginx", -- ignored in the SandboxFilter
Hostname = "bogus.mozilla.com", -- ignored in the SandboxFilter

Timestamp = 1e9,
Type = "TEST", -- will become "heka.sandbox.TEST" in the SandboxFilter
Papload = "Test Payload",
EnvVersion = "0.8",
Pid = 1234,
Severity = 6,
Fields = {
 http_status = 200,
 request_size = {value=1413, representation="B"}
 }
}

Lua Circular Buffer Library

The library is a sliding window time series data store and is implemented in
the circular_buffer table.

Constructor

circular_buffer.new(rows, columns, seconds_per_row, enable_delta)

		Arguments

		
		rows (unsigned) The number of rows in the buffer (must be > 1)

		columns (unsigned)The number of columns in the buffer (must be > 0)

		seconds_per_row (unsigned) The number of seconds each row represents (must be > 0).

		enable_delta (optional, default false bool) When true the changes made to the circular buffer between delta outputs are tracked.

		Return

		A circular buffer object.

Methods

Note

All column arguments are 1 based. If the column is out of range for the
configured circular buffer a fatal error is generated.

double add(nanoseconds, column, value)

		Arguments

		
		nanosecond (unsigned) The number of nanosecond since the UNIX epoch. The value is used to determine which row is being operated on.

		column (unsigned) The column within the specified row to perform an add operation on.

		value (double) The value to be added to the specified row/column.

		Return

		The value of the updated row/column or nil if the time was outside the range of the buffer.

double set(nanoseconds, column, value)

		Arguments

		
		nanosecond (unsigned) The number of nanosecond since the UNIX epoch. The value is used to determine which row is being operated on.

		column (unsigned) The column within the specified row to perform a set operation on.

		value (double) The value to be overwritten at the specified row/column.

		Return

		The value passed in or nil if the time was outside the range of the buffer.

double get(nanoseconds, column)

		Arguments

		
		nanosecond (unsigned) The number of nanosecond since the UNIX epoch. The value is used to determine which row is being operated on.

		column (unsigned) The column within the specified row to retrieve the data from.

		Return

		The value at the specifed row/column or nil if the time was outside the range of the buffer.

int set_header(column, name, unit, aggregation_method)

		Arguments

		
		column (unsigned) The column number where the header information is applied.

		name (string) Descriptive name of the column (maximum 15 characters). Any non alpha numeric characters will be converted to underscores. (default: Column_N)

		unit (string - optional) The unit of measure (maximum 7 characters). Alpha numeric, ‘/’, and ‘*’ characters are allowed everything else will be converted to underscores. i.e. KiB, Hz, m/s (default: count)

		
		aggregation_method (string - optional) Controls how the column data is aggregated when combining multiple circular buffers.

		
		sum The total is computed for the time/column (default).

		min The smallest value is retained for the time/column.

		max The largest value is retained for the time/column.

		avg The average is computed for the time/column.

		none No aggregation will be performed the column.

		Return

		The column number passed into the function.

double compute(function, column, start, end)

		Arguments

		
		function (string) The name of the compute function (sum|avg|sd|min|max).

		column (unsigned) The column that the computation is performed against.

		start (optional - unsigned) The number of nanosecond since the UNIX epoch. Sets the start time of the computation range; if nil the buffer’s start time is used.

		end (optional- unsigned) The number of nanosecond since the UNIX epoch. Sets the end time of the computation range (inclusive); if nil the buffer’s end time is used. The end time must be greater than or equal to the start time.

		Return

		The result of the computation for the specifed column over the given range or nil if the range fell outside of the buffer.

		cbuf format(format)

		Sets an internal flag to control the output format of the circular buffer data structure; if deltas are not enabled or there haven’t been any modifications, nothing is output.

		Arguments

		
		
		format (string)

		
		cbuf The circular buffer full data set format.

		cbufd The circular buffer delta data set format.

		Return

		The circular buffer object.

Output

The circular buffer can be passed to the output() function. The output format
can be selected using the format() function.

The cbuf (full data set) output format consists of newline delimited rows
starting with a json header row followed by the data rows with tab delimited
columns. The time in the header corresponds to the time of the first data row,
the time for the other rows is calculated using the seconds_per_row header value.

{json header}
row1_col1\trow1_col2\n
.
.
.
rowN_col1\trowN_col2\n

The cbufd (delta) output format consists of newline delimited rows starting with
a json header row followed by the data rows with tab delimited columns. The
first column is the timestamp for the row (time_t). The cbufd output will only
contain the rows that have changed and the corresponding delta values for each
column.

{json header}
row14_timestamp\trow14_col1\trow14_col2\n
row10_timestamp\trow10_col1\trow10_col2\n

Sample Cbuf Output

{"time":2,"rows":3,"columns":3,"seconds_per_row":60,"column_info":[{"name":"HTTP_200","unit":"count","aggregation":"sum"},{"name":"HTTP_400","unit":"count","aggregation":"sum"},{"name":"HTTP_500","unit":"count","aggregation":"sum"}]}
10002 0 0
11323 0 0
10685 0 0

Example

-- This Source Code Form is subject to the terms of the Mozilla Public
-- License, v. 2.0. If a copy of the MPL was not distributed with this
-- file, You can obtain one at http://mozilla.org/MPL/2.0/.

data = circular_buffer.new(1440, 5, 60) -- 1 day at 1 minute resolution
local HTTP_200 = data:set_header(1, "HTTP_200" , "count")
local HTTP_300 = data:set_header(2, "HTTP_300" , "count")
local HTTP_400 = data:set_header(3, "HTTP_400" , "count")
local HTTP_500 = data:set_header(4, "HTTP_500" , "count")
local HTTP_UNKNOWN = data:set_header(5, "HTTP_UNKNOWN" , "count")

function process_message()
 local ts = read_message("Timestamp")
 local sc = read_message("Fields[http_status_code]")
 if sc == nil then return 0 end

 if sc >= 200 and sc < 300 then
 data:add(ts, HTTP_200, 1)
 elseif sc >= 300 and sc < 400 then
 data:add(ts, HTTP_300, 1)
 elseif sc >= 400 and sc < 500 then
 data:add(ts, HTTP_400, 1)
 elseif sc >= 500 and sc < 600 then
 data:add(ts, HTTP_500, 1)
 else
 data:add(ts, HTTP_UNKNOWN, 1)
 end
 return 0
end

function timer_event()
 output(data)
 inject_message("cbuf", "HTTP Status Code Statistics")
end

Setting the inject_message payload_type to “cbuf” will cause the
DashboardOutput to automatically generate an HTML page
containing a graphical view of the data.

Lua Sandbox Tutorial

How to create a simple sandbox filter

		Implement the required Heka interface in Lua

function process_message ()
 return 0
end

function timer_event(ns)
end

		Add the business logic (count the number of ‘demo’ events per minute)

total = 0 -- preserved between restarts since it is in global scope
local count = 0 -- local scope so this will not be preserved

function process_message()
 total= total + 1
 count = count + 1
 return 0
end

function timer_event(ns)
 output(string.format("%d messages in the last minute; total=%d", count, total))
 count = 0
 inject_message()
end

		Setup the configuration

[demo_counter]
type = "SandboxFilter"
message_matcher = "Type == 'demo'"
ticker_interval = 60
script_type = "lua"
filename = "counter.lua"
preserve_data = true
memory_limit = 32767
instruction_limit = 100
output_limit = 256

4. Extending the business logic (count the number of ‘demo’ events per minute
per device)

device_counters = {}

function process_message()
 local device_name = read_message("Fields[DeviceName]")
 if device_name == nil then
 device_name = "_unknown_"
 end

 local dc = device_counters[device_name]
 if dc == nil then
 dc = {count = 1, total = 1}
 device_counters[device_name] = dc
 else
 dc.count = dc.count + 1
 dc.total = dc.total + 1
 end
 return 0
end

function timer_event(ns)
 output("#device_name\tcount\ttotal\n")
 for k, v in pairs(device_counters) do
 output(string.format("%s\t%d\t%d\n", k, v.count, v.total))
 v.count = 0
 end
 inject_message()
end

		Depending on the number of devices being counted you will most likely want to update the configuration to account for the additional resource requirements.

memory_limit = 65536
instruction_limit = 20000
output_limit = 64512

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

_static/images/divider.png

man/usage.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

hekad

Synopsis

hekad [-version] [-config config_file]

Description

The hekad daemon is the core component of the heka project, which
handles routing messages, generating metrics, aggregating statsd-type
messages, running plugins on the messages, and sending messages to the
configured destinations.

Options

		-version

		Output the version number, then exit.

		-config config_file

		Specify the configuration file to use; the default is /etc/hekad.toml. (See hekad.config(5).)

Files

/etc/hekad.toml configuration file

See Also

hekad.config(5), hekad.plugin(5)

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

developing/release.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

Heka release process

This document contains a description of the steps taken to make a release
of the Heka server.

		Review intended release branch for correct version number (in
cmd/hekad/main.go, docs/source/conf.py, and CMakeLists.txt) and
updated changelog (CHANGES.txt) and verify that the build succeeds and
all tests pass.

		Tag verified commit on intended release branch with appropriate version
tag.

		If this release is the highest released version number to date, the
verified commit should be merged into the master branch.

		Bump version number (in cmd/hekad/main.go, docs/source/conf.py, and
CMakeLists.txt) and add section for future release to changelog
(CHANGES.txt). Commit “version bump” revision to the released version
branch and push.

		Build all required binary packages.

		Create new github release (https://github.com/mozilla-
services/heka/releases) and upload generated binaries.

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

_static/minus.png

_static/comment-bright.png

sandbox/manager.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

Sandbox Manager

The SandboxManagerFilter allows SandboxFilters to be dynamically started and
stopped using a signed Heka message. The intent is to have one
manager per access control group each with their own message signing key. Users
in each group can submit a signed control message to manage any filters running
under the associated manager. A signed message is not an enforced requirement
but it is highly recommended in order to restrict access to this functionality.

SandboxManagerFilter Settings

		Common Filter / Output Parameters

		
		working_directory (string):

		The directory where the filter configurations, code, and states are preserved. The directory can be unique or shared between sandbox managers since the filter names are unique per manager. Defaults to a directory in ${BASE_DIR}/sbxmgrs with a name generated from the plugin name.

		
		max_filters (uint):

		The maximum number of filters this manager can run.

Example

[OpsSandboxManager]
type = "SandboxManagerFilter"
message_signer = "ops"
message_matcher = "Type == 'heka.control.sandbox'"
max_filters = 100

Control Message

The sandbox manager control message is a regular Heka message with the following
variables set to the specified values.

Starting a SandboxFilter

		Type: “heka.control.sandbox”

		Payload: sandbox code

		Fields[action]: “load”

		Fields[config]: the TOML configuration for the SandboxFilter SandboxFilter Settings

Stopping a SandboxFilter

		Type: “heka.control.sandbox”

		Fields[action]: “unload”

		Fields[name]: The SandboxFilter name specified in the configuration

sbmgr

Sbmgr is a tool for managing (starting/stopping) sandbox filters by generating
the control messages defined above.

Command Line Options

sbmgr [-config config_file] [-action load|unload] [-filtername specified on unload]
[-script sandbox script filename] [-scriptconfig sandbox script configuration filename]

sbmgrload

Sbmgrload is a test tool for starting/stopping a large number of sandboxes. The
script and configuration are built into the tool and the filters will be named:
CounterSandboxN where N is the instance number.

Command Line Options

sbmgrload [-config config_file] [-action load|unload] [-num number of sandbox instances]

Configuration Variables

		ip_address (string): IP address of the Heka server.

		
		signer (object): Signer information for the encoder.

		
		name (string): The name of the signer.

		hmac_hash (string): md5 or sha1

		hmac_key (string): The key the message will be signed with.

		version (int): The version number of the hmac_key.

Example

ip_address = "127.0.0.1:5565"
[signer]
 name = "test"
 hmac_hash = "md5"
 hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
 version = 0

Tutorial - How to use the dynamic sandboxes

SandboxManager/Heka Setup

1. The SandboxManagerFilters are defined in the hekad configuration file and
are created when hekad starts. The manager provides a location/namespace for
SandboxFilters to run and controls access to this space via a signed Heka
message. By associating a message_signer with the manager we can restrict
who can load and unload the associated filters. Lets start by
configuring a SandboxManager for a specific set of users; platform developers.
Choose a unique filter name [PlatformDevs] and a signer name
“PlatformDevs”, in this case we will use the same name for each.

[PlatformDevs]
type = "SandboxManagerFilter"
message_signer = "PlatformDevs"
message_matcher = "Type == 'heka.control.sandbox'"
working_directory = "/var/heka/sandbox"
max_filters = 100

2. Configure the input that will receive the SandboxManager control messages.
For this setup we will extend the current TCP input to handle our signed
messages. The signer section consists of the signer name followed by an
underscore and the key version number (the reason for this notation is to
simply flatten the signer configuration structure into a single map). Multiple
key versions are allowed to be active at the same time facilitating the rollout
of new keys.

[TCP:5565]
type = "TcpInput"
address = ":5565"
 [TCP:5565.signer.PlatformDevs_0]
 hmac_key = "Old Platform devs signing key"
 [TCP:5565.signer.PlatformDevs_1]
 hmac_key = "Platform devs signing key"

3. Configure the sandbox manager utility (sbmgr). The signer information must
exactly match the values in the input configuration above otherwise the
messages will be discarded. Save the file as PlatformDevs.toml.

ip_address = ":5565"
[signer]
 name = "PlatformDevs"
 hmac_hash = "md5"
 hmac_key = "Platform devs signing key"
 version = 1

SandboxFilter Setup

		Create a SandboxFilter script and save it as “example.lua”. See Lua Sandbox Tutorial for more detail.

data = circular_buffer.new(1440, 1, 60) -- message count per minute
local COUNT = data:set_header(1, "Messages", "count")
function process_message ()
 local ts = read_message("Timestamp")
 data:add(ts, COUNT, 1)
 return 0
end

function timer_event(ns)
 output(data)
 inject_message("cbuf")
end

		Create the SandboxFilter configuration and save it as “example.toml”.

The only difference between a static and dynamic SandboxFilter configuration is
the filename. In the dynamic configuration it can be left blank or left out
entirely. The manager will assign the filter a unique system wide name, in
this case, “PlatformDevs-Example”.

[Example]
type = "SandboxFilter"
message_matcher = "Type == 'Widget'"
ticker_interval = 60
script_type = "lua"
filename = ""
preserve_data = false
memory_limit = 64000
instruction_limit = 100
output_limit = 64000

		Load the filter using sbmgr.

sbmgr -action=load -config=PlatformDevs.toml -script=example.lua -scriptconfig=example.toml

If you are running the DashboardOutput the following links are
available:

		Information about the running filters: http://localhost:4352/heka_report.html.

		Graphical Output (after 1 minute in this case): http://localhost:4352/PlatformDevs-Example.html

Otherwise

		Information about the terminated filters: http://localhost:4352/heka_sandbox_termination.html.

Note

A running filter cannot be ‘reloaded’ it must be unloaded and loaded again.
The state is not preserved in this case for two reasons (in the future we
hope to remedy this):

		During the unload/load process some data can be missed creating a small gap in the analysis causing anomalies and confusion.

		The internal data representation may have changed and restoration may be problematic.

		Unload the filter using sbmgr

sbmgr -action=unload -config=PlatformDevs.toml -filtername=Example

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

man/plugin.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

hekad

Description

Available hekad plugins compiled with this version of hekad.

Inputs

AMQPInput

Connects to a remote AMQP broker (RabbitMQ) and retrieves messages from
the specified queue. If the message is serialized by hekad’s AMQPOutput
then the message will be de-serialized, otherwise the message will be
run through the specified PayloadRegexDecoder’s. As AMQP is dynamically
programmable, the broker topology needs to be specified.

Parameters:

		
		URL (string):

		An AMQP connection string formatted per the RabbitMQ URI Spec [http://www.rabbitmq.com/uri-spec.html].

		
		Exchange (string):

		AMQP exchange name

		
		ExchangeType (string):

		AMQP exchange type (fanout, direct, topic, or headers).

		
		ExchangeDurability (bool):

		Whether the exchange should be configured as a durable exchange. Defaults
to non-durable.

		
		ExchangeAutoDelete (bool):

		Whether the exchange is deleted when all queues have finished and there
is no publishing. Defaults to auto-delete.

		
		RoutingKey (string):

		The message routing key used to bind the queue to the exchange. Defaults
to empty string.

		
		PrefetchCount (int):

		How many messages to fetch at once before message acks are sent. See
RabbitMQ performance measurements [http://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/]
for help in tuning this number. Defaults to 2.

		
		Queue (string):

		Name of the queue to consume from, an empty string will have the broker
generate a name for the queue. Defaults to empty string.

		
		QueueDurability (bool):

		Whether the queue is durable or not. Defaults to non-durable.

		
		QueueExclusive (bool):

		Whether the queue is exclusive (only one consumer allowed) or not.
Defaults to non-exclusive.

		
		QueueAutoDelete (bool):

		Whether the queue is deleted when the last consumer un-subscribes.
Defaults to auto-delete.

		
		Decoder (string):

		Decoder name used to transform a raw message body into a structured hekad
message. Must be a decoder appropriate for the messages that come in from
the exchange.

Since many of these parameters have sane defaults, a minimal configuration to
consume serialized messages would look like:

[AMQPInput]
url = "amqp://guest:guest@rabbitmq/"
exchange = "testout"
exchangeType = "fanout"

Or if using a PayloadRegexDecoder to parse OSX syslog messages may look like:

[AMQPInput]
url = "amqp://guest:guest@rabbitmq/"
exchange = "testout"
exchangeType = "fanout"
decoder = "logparser"

[logparser]
type = "MultiDecoder"
order = ["logline", "leftovers"]

 [logparser.subs.logline]
 type = "PayloadRegexDecoder"
 MatchRegex = '\w+ \d+ \d+:\d+:\d+ \S+ (?P<Reporter>[^\[]+)\[(?P<Pid>\d+)](?P<Sandbox>[^:]+)?: (?P Remaining>.*)'

 [logparser.subs.logline.MessageFields]
 Type = "amqplogline"
 Hostname = "myhost"
 Reporter = "%Reporter%"
 Remaining = "%Remaining%"
 Logger = "%Logger%"
 Payload = "%Remaining%"

 [leftovers]
 type = "PayloadRegexDecoder"
 MatchRegex = '.*'

 [leftovers.MessageFields]
 Type = "drop"
 Payload = ""

UdpInput

Listens on a specific UDP address and port for messages. If the message is
signed it is verified against the signer name and specified key version. If
the signature is not valid the message is discarded otherwise the signer name
is added to the pipeline pack and can be use to accept messages using the
message_signer configuration option.

Note

The UDP payload is not restricted to a single message; since the stream
parser is being used multiple messages can be sent in a single payload.

Parameters:

		
		address (string):

		An IP address:port on which this plugin will listen.

		
		signer:

		Optional TOML subsection. Section name consists of a signer name,
underscore, and numeric version of the key.

		
		hmac_key (string):

		The hash key used to sign the message.

New in version 0.4.

		
		decoder (string):

		A decoder must be specified for the message.proto parser
(i.e. ProtobufDecoder) but is optional for token and regexp parsers (if no
decoder is specified the parsed data is available in the Heka message
payload).

		
		parser_type (string):

		
		token - splits the stream on a byte delimiter.

		regexp - splits the stream on a regexp delimiter.

		message.proto - splits the stream on protobuf message boundaries.

		
		delimiter (string): Only used for token or regexp parsers.

		Character or regexp delimiter used by the parser (default “\n”). For the
regexp delimiter a single capture group can be specified to preserve the
delimiter (or part of the delimiter). The capture will be added to the start
or end of the message depending on the delimiter_location configuration.

		
		delimiter_location (string): Only used for regexp parsers.

		
		start - the regexp delimiter occurs at the start of the message.

		end - the regexp delimiter occurs at the end of the message (default).

Example:

[UdpInput]
address = "127.0.0.1:4880"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

[UdpInput.signer.ops_0]
hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
[UdpInput.signer.ops_1]
hmac_key = "xdd908lfcgikauexdi8elogusridaxoalf"

[UdpInput.signer.dev_1]
hmac_key = "haeoufyaiofeugdsnzaogpi.ua,dp.804u"

TcpInput

Listens on a specific TCP address and port for messages. If the message is
signed it is verified against the signer name and specified key version. If
the signature is not valid the message is discarded otherwise the signer name
is added to the pipeline pack and can be use to accept messages using the
message_signer configuration option.

Parameters:

		
		address (string):

		An IP address:port on which this plugin will listen.

		
		signer:

		Optional TOML subsection. Section name consists of a signer name,
underscore, and numeric version of the key.

		
		hmac_key (string):

		The hash key used to sign the message.

New in version 0.4.

		
		decoder (string):

		A decoder must be specified for the message.proto parser
(i.e. ProtobufDecoder) but is optional for token and regexp parsers (if no
decoder is specified the parsed data is available in the Heka message
payload).

		
		parser_type (string):

		
		token - splits the stream on a byte delimiter.

		regexp - splits the stream on a regexp delimiter.

		message.proto - splits the stream on protobuf message boundaries.

		
		delimiter (string): Only used for token or regexp parsers.

		Character or regexp delimiter used by the parser (default “\n”). For the
regexp delimiter a single capture group can be specified to preserve the
delimiter (or part of the delimiter). The capture will be added to the start
or end of the message depending on the delimiter_location configuration.

		
		delimiter_location (string): Only used for regexp parsers.

		
		start - the regexp delimiter occurs at the start of the message.

		end - the regexp delimiter occurs at the end of the message (default).

Example:

[TcpInput]
address = ":5565"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

[TcpInput.signer.ops_0]
hmac_key = "4865ey9urgkidls xtb0[7lf9rzcivthkm"
[TcpInput.signer.ops_1]
hmac_key = "xdd908lfcgikauexdi8elogusridaxoalf"

[TcpInput.signer.dev_1]
hmac_key = "haeoufyaiofeugdsnzaogpi.ua,dp.804u"

LogfileInput

Tails a single log file, creating a message for each line in the file being
monitored. Files are read in their entirety, and watched for changes. This
input gracefully handles log rotation via the file moving but may lose a few
log lines if using the “truncation” method of log rotation. It’s recommended
to use log rotation schemes that move the file to another location to avoid
possible loss of log lines.

In the event the log file does not currently exist, it will be placed in an
internal discover list, and checked for existence every discover_interval
milliseconds (5000ms or 5s by default).

A single LogfileInput can only be used to read a single file. If you have
multiple identical files spread across multiple directories (e.g. a
/var/log/hosts/<HOSTNAME>/app.log structure, where each <HOSTNAME> folder
contains a log file originating from a separate host), you’ll want to use the
LogfileDirectoryManagerInput.

Parameters:

		
		logfile (string):

		Each LogfileInput can have a single logfile to monitor.

		
		hostname (string):

		The hostname to use for the messages, by default this will be the
machines qualified hostname. This can be set explicitly to ensure
its the correct name in the event the machine has multiple
interfaces/hostnames.

		
		discover_interval (int):

		During logfile rotation, or if the logfile is not originally
present on the system, this interval is how often the existence of
the logfile will be checked for. The default of 5 seconds is
usually fine. This interval is in milliseconds.

		
		stat_interval (int):

		How often the file descriptors for each file should be checked to
see if new log data has been written. Defaults to 500 milliseconds.
This interval is in milliseconds.

		
		logger (string):

		Each LogfileInput may specify a logger name to use in the case an
error occurs during processing of a particular line of logging
text. By default, the logger name is set to the logfile name.

		
		use_seek_journal (bool):

		Specifies whether to use a seek journal to keep track of where we are
in a file to be able to resume parsing from the same location upon
restart. Defaults to true.

		
		seek_journal_name (string):

		Name to use for the seek journal file, if one is used. Only refers to
the file name itself, not the full path; Heka will store all seek
journals in a seekjournal folder relative to the Heka base directory.
Defaults to a sanitized version of the logger value (which itself
defaults to the filesystem path of the input file). This value is
ignored if use_seek_journal is set to false.

		
		resume_from_start (bool):

		When heka restarts, if a logfile cannot safely resume reading from
the last known position, this flag will determine whether hekad
will force the seek position to be 0 or the end of file. By
default, hekad will resume reading from the start of file.

New in version 0.4.

		
		decoder (string):

		A decoder must be specified for the message.proto parser
(i.e. ProtobufDecoder) but is optional for token and regexp parsers (if no
decoder is specified the parsed data is available in the Heka message
payload).

		
		parser_type (string):

		
		token - splits the log on a byte delimiter (default).

		regexp - splits the log on a regexp delimiter.

		message.proto - splits the log on protobuf message boundaries

		
		delimiter (string): Only used for token or regexp parsers.

		Character or regexp delimiter used by the parser (default “\n”). For the
regexp delimiter a single capture group can be specified to preserve the
delimiter (or part of the delimiter). The capture will be added to the start
or end of the log line depending on the delimiter_location configuration.
Note: when a start delimiter is used the last line in the file will not be
processed (since the next record defines its end) until the log is rolled.

		
		delimiter_location (string): Only used for regexp parsers.

		
		start - the regexp delimiter occurs at the start of a log line.

		end - the regexp delimiter occurs at the end of the log line (default).

[LogfileInput]
logfile = "/var/log/opendirectoryd.log"
logger = "opendirectoryd"

[LogfileInput]
logfile = "/var/log/opendirectoryd.log"

LogfileDirectoryManagerInput

Scans for log files in a globbed directory path and when a new file matching
the specified path is discovered it will start an instance of the LogfileInput
plugin to process it. Each LogfileInput will inherit its configuration from
the manager’s settings with the logfile property properly adjusted.

Parameters: (identical to LogfileInput with the following exceptions)

		
		logfile (string):

		A path with a globbed directory component pointing to a common (statically
named) log file. Note that only directories can be globbed; the file itself
must have the same name in each directory.

		
		seek_journal_name (string):

		With a LogfileInput it is possible to specify a particular name for the
seek journal file that will be used. This is not possible with the
LogfileDirectoryManagerInput; the seek_journal_name will always be auto-
generated, and any attempt to specify a hard coded seek_journal_name will
be treated as a configuration error.

		
		ticker_interval (uint):

		Time interval (in seconds) between directory scans for new log files.
Defaults to 0 (only scans once on startup).

[vhosts]
type = "LogfileDirectoryManagerInput"
logfile = "/var/log/vhost/*/apache.log"

Note

The spawned LogfileInput plugins are named manager_name-logfile i.e.,

		vhosts-/var/log/www/apache.log

		vhosts-/var/log/internal/apache.log

StatsdInput

Listens for statsd protocol [https://github.com/b/statsd_spec] counter,
timer, or gauge messages on a UDP port, and generates Stat objects that
are handed to a StatAccumulator for aggregation and processing.

Parameters:

		
		address (string):

		An IP address:port on which this plugin will expose a statsd server.
Defaults to “127.0.0.1:8125”.

		
		stat_accum_name (string):

		Name of a StatAccumInput instance that this StatsdInput will use as its
StatAccumulator for submitting received stat values. Defaults to
“StatAccumInput”.

Example:

[StatsdInput]
address = ":8125"
stat_accum_input = "custom_stat_accumulator"

StatAccumInput

Provides an implementation of the StatAccumulator interface which other
plugins can use to submit Stat objects for aggregation and roll-up.
Accumulates these stats and then periodically emits a “stat metric” type
message containing aggregated information about the stats received since the
last generated message.

Parameters:

		
		emit_in_payload (bool):

		Specifies whether or not the aggregated stat information should be emitted
in the payload of the generated messages, in the format accepted by the
carbon [http://graphite.wikidot.com/carbon] portion of the graphite [http://graphite.wikidot.com/] graphing software. Defaults to true.

		
		emit_in_fields (bool):

		Specifies whether or not the aggregated stat information should be emitted
in the message fields of the generated messages. Defaults to false. NOTE:
At least one of ‘emit_in_payload’ or ‘emit_in_fields’ must be true or it
will be considered a configuration error and the input won’t start.

		
		percent_threshold (int):

		Percent threshold to use for computing “upper_N%” type stat values.
Defaults to 90.

		
		ticker_interval (uint):

		Time interval (in seconds) between generated output messages.
Defaults to 10.

		
		message_type (string):

		String value to use for the Type value of the emitted stat messages.
Defaults to “heka.statmetric”.

ProcessInput

Executes one or more external programs on an interval, creating
messages from the output. If a chain of commands is used, stdout is
piped into the next command’s stdin. In the event the program returns a
non-zero exit code, ProcessInput will stop, logging the exit error.

Parameters:
Each command is defined with the following parameters:

		Name (string):
Each ProcessInput must have a name defined for logging purposes.
The messages will be tagged with name.stdout or name.stderr in
the ProcessInputName field of the heka message.

		
		Command (map[uint]cmd_config):

		The command is a structure that contains the full path to the
binary, command line arguments, optional enviroment variables and
an optional working directory. See the cmd_config definition
below. ProcessInput expects the commands to be indexed by
integers starting with 0.

		
		ticker_interval (uint):

		The number of seconds to wait between runnning command.
Defaults to 15. A ticker_interval of 0 indicates that the command
is run once.

		
		stdout (bool):

		Capture stdout from command. Defaults to true.

		
		stderr (bool):

		Capture stderr from command. Defaults to false.

		
		decoder (string):

		Name of the decoder instance to send messages to. Default is to inject
messages back into the main heka router.

		
		parser_type (string):

		
		token - splits the log on a byte delimiter (default).

		regexp - splits the log on a regexp delimiter.

		
		delimiter (string): Only used for token or regexp parsers.

		Character or regexp delimiter used by the parser (default “\n”). For the
regexp delimiter a single capture group can be specified to preserve the
delimiter (or part of the delimiter). The capture will be added to the start
or end of the log line depending on the delimiter_location configuration.
Note: when a start delimiter is used the last line in the file will not be
processed (since the next record defines its end) until the log is rolled.

		
		delimiter_location (string): Only used for regexp parsers.

		
		start - the regexp delimiter occurs at the start of a log line.

		end - the regexp delimiter occurs at the end of the log line (default).

		timeout (uint):
Timeout in seconds before any one of the commands in the chain is
terminated.

		trim (bool) :
Trim a single trailing newline character if one exists. Default is
true.

cmd_config structure

- bin (string):

The full path to the binary that will be executed.

		
		args ([]string):

		Command line arguments to pass into the executable.

		
		environment ([]string):

		Used to set environment variables before command is run. Default is nil,
which uses the heka process’s environment.

		
		directory (string):

		Used to set the working directory of Bin Default is “”, which
uses the heka process’s working directory.

[ProcessInput]
name = "DemoProcessInput"
ticker_interval = 2
parser_type = "token"
delimiter = " "
stdout = true
stderr = false
trim = true

[ProcessInput.Command.0]
bin = "/bin/cat"
Args = ["../testsupport/process_input_pipes_test.txt"]

[ProcessInput.Command.1]
bin = "/usr/bin/grep"
Args = ["ignore"]

HttpInput

Starts a HTTP client which intermittently polls a URL for data.
The entire response body is parsed by a decoder into a pipeline pack.
Data is always fetched using HTTP GET and any errors are logged and
are not fatal for the plugin.

Parameters:

		
		url (string):

		A HTTP URL which this plugin will regularly poll for data.
No default URL is specified.

		
		ticker_interval (uint):

		Time interval (in seconds) between attempts to poll for new data.
Defaults to 10.

		
		decoder (string):

		The name of the decoder used to transform the response body text into
a structured hekad message. No default decoder is specified.

Example:

[HttpInput]
url = "http://localhost:9876/"
ticker_interval = 5
decoder = "ProtobufDecoder"

Decoders

A decoder may be specified for each encoding type defined in message.pb.go.
Unless you are using a custom decoder you probably won’t need to specify these
by hand, by default the ProtobufDecoder will be configured as if you
had included the following configuration.

Example:

[ProtobufDecoder]
encoding_name = "PROTOCOL_BUFFER"

The ProtobufDecoder converts protocol buffers serialized messages to
Message struct objects. The hekad protocol buffers message schema in
defined in the message.proto file in the message package.

Note

These sections remain configurable explicitly in the configuration
file for possible future use where a different Decoder may want to
handle one of these encodings.

See also

Protocol Buffers - Google’s data interchange format [http://code.google.com/p/protobuf/]

PayloadRegexDecoder

Decoder plugin that accepts messages of a specified form and generates new
outgoing messages from extracted data, effectively transforming one message
format into another. Can be combined w/ message_matcher capture groups (see
matcher_capture_groups) to extract unstructured information from
message payloads and use it to populate Message struct attributes and fields
in a more structured manner.

Parameters:

		
		match_regex:

		Regular expression that must match for the decoder to process the message.

		
		severity_map:

		Subsection defining severity strings and the numerical value they should
be translated to. hekad uses numerical severity codes, so a severity of
WARNING can be translated to 3 by settings in this section.

		
		message_fields:

		Subsection defining message fields to populate and the interpolated values
that should be used. Valid interpolated values are any captured in a regex
in the message_matcher, and any other field that exists in the message. In
the event that a captured name overlaps with a message field, the captured
name’s value will be used. Optional representation metadata can be added at
the end of the field name using a pipe delimiter i.e. ResponseSize|B =
“%ResponseSize%” will create Fields[ResponseSize] representing the number of
bytes. Adding a representation string to a standard message header name
will cause it to be added as a user defined field i.e., Payload|json will
create Fields[Payload] with a json representation.

Interpolated values should be surrounded with % signs, for example:

[my_decoder.message_fields]
Type = "%Type%Decoded"

This will result in the new message’s Type being set to the old messages
Type with Decoded appended.

		
		timestamp_layout (string):

		A formatting string instructing hekad how to turn a time string into the
actual time representation used internally. Example timestamp layouts can
be seen in Go’s time documetation [http://golang.org/pkg/time/#pkg-constants].

		
		timestamp_location (string):

		Time zone in which the timestamps in the text are presumed to be in.
Should be a location name corresponding to a file in the IANA Time Zone
database (e.g. “America/Los_Angeles”), as parsed by Go’s
time.LoadLocation() function (see
http://golang.org/pkg/time/#LoadLocation). Defaults to “UTC”. Not required
if valid time zone info is embedded in every parsed timestamp, since those
can be parsed as specified in the timestamp_layout.

Example (Parsing Apache Combined Log Format):

[apache_transform_decoder]
type = "PayloadRegexDecoder"
match_regex = '/^(?P<RemoteIP>\S+) \S+ \S+ \[(?P<Timestamp>[^\]]+)\] "(?P<Method>[A-Z]+) (?P<Url>[^\s]+)[^"]*" (?P<StatusCode>\d+) (?P<RequestSize>\d+) "(?P<Referer>[^"]*)" "(?P<Browser>[^"]*)"/'
timestamplayout = "02/Jan/2006:15:04:05 -0700"

[apache_transform_decoder.severity_map]
DEBUG = 1
WARNING = 2
INFO = 3

[apache_transform_decoder.message_fields]
Type = "ApacheLogfile"
Logger = "apache"
Url|uri = "%Url%"
Method = "%Method%"
Status = "%Status%"
RequestSize|B = "%RequestSize%"
Referer = "%Referer%"
Browser = "%Browser%"

PayloadJsonDecoder

This decoder plugin accepts JSON blobs and allows you to map parts
of the JSON into Field attributes of the pipelinepack message using
JSONPath syntax.

Parameters:

		
		json_map:

		A subsection defining a capture name that maps to a JSONPath expression.
Each expression can fetch a single value, if the expression does
not resolve to a valid node in the JSON message, the capture group
will be assigned an empty string value.

		
		severity_map:

		Subsection defining severity strings and the numerical value they should
be translated to. hekad uses numerical severity codes, so a severity of
WARNING can be translated to 3 by settings in this section.

		
		message_fields:

		Subsection defining message fields to populate and the interpolated values
that should be used. Valid interpolated values are any captured in a JSONPath
in the message_matcher, and any other field that exists in the message. In
the event that a captured name overlaps with a message field, the captured
name’s value will be used. Optional representation metadata can be added at
the end of the field name using a pipe delimiter i.e. ResponseSize|B =
“%ResponseSize%” will create Fields[ResponseSize] representing the number of
bytes. Adding a representation string to a standard message header name
will cause it to be added as a user defined field i.e., Payload|json will
create Fields[Payload] with a json representation.

Interpolated values should be surrounded with % signs, for example:

[my_decoder.message_fields]
Type = "%Type%Decoded"

This will result in the new message’s Type being set to the old messages
Type with Decoded appended.

		
		timestamp_layout (string):

		A formatting string instructing hekad how to turn a time string into the
actual time representation used internally. Example timestamp layouts can
be seen in Go’s time documetation [http://golang.org/pkg/time/#pkg-constants]. The default layout is ISO8601 - the same as
Javascript.

		
		timestamp_location (string):

		Time zone in which the timestamps in the text are presumed to be in.
Should be a location name corresponding to a file in the IANA Time Zone
database (e.g. “America/Los_Angeles”), as parsed by Go’s
time.LoadLocation() function (see
http://golang.org/pkg/time/#LoadLocation). Defaults to “UTC”. Not required
if valid time zone info is embedded in every parsed timestamp, since those
can be parsed as specified in the timestamp_layout.

Example:

[myjson_decoder]
type = "PayloadJsonDecoder"

[myjson_decoder.json_map]
Count = "$.statsd.count"
Name = "$.statsd.name"
Pid = "$.pid"
Timestamp = "$.timestamp"

[myjson_decoder.severity_map]
DEBUG = 1
WARNING = 2
INFO = 3

[myjson_decoder.message_fields]
Pid = "%Pid%"
StatCount = "%Count%"
StatName = "%Name%"
Timestamp = "%Timestamp%"

PayloadJsonDecoder’s json_map config subsection only supports a small
subset of valid JSONPath expressions.

		JSONPath
		Description

		$
		the root object/element

		.
		child operator

		[]
		subscript operator to iterate over arrays

Examples:

var s = {
 "foo": {
 "bar": [
 {
 "baz": "こんにちわ世界",
 "noo": "aaa"
 },
 {
 "maz": "123",
 "moo": 256
 }
],
 "boo": {
 "bag": true,
 "bug": false
 }
 }
}

Valid paths
$.foo.bar[0].baz
$.foo.bar

PayloadXmlDecoder

This decoder plugin accepts XML blobs in the message payload and
allows you to map parts of the XML into Field attributes of the
pipelinepack message using XPath syntax using the xmlpath [http://launchpad.net/xmlpath] library.

Parameters:

		
		xpath_map:

		A subsection defining a capture name that maps to an XPath expression.
Each expression can fetch a single value, if the expression does
not resolve to a valid node in the XML blob, the capture group
will be assigned an empty string value.

		
		severity_map:

		Subsection defining severity strings and the numerical value they should
be translated to. hekad uses numerical severity codes, so a severity of
WARNING can be translated to 3 by settings in this section.

		
		message_fields:

		Subsection defining message fields to populate and the interpolated values
that should be used. Valid interpolated values are any captured in an XPath
in the message_matcher, and any other field that exists in the message. In
the event that a captured name overlaps with a message field, the captured
name’s value will be used. Optional representation metadata can be added at
the end of the field name using a pipe delimiter i.e. ResponseSize|B =
“%ResponseSize%” will create Fields[ResponseSize] representing the number of
bytes. Adding a representation string to a standard message header name
will cause it to be added as a user defined field i.e., Payload|json will
create Fields[Payload] with a json representation.

Interpolated values should be surrounded with % signs, for example:

[my_decoder.message_fields]
Type = "%Type%Decoded"

This will result in the new message’s Type being set to the old messages
Type with Decoded appended.

		
		timestamp_layout (string):

		A formatting string instructing hekad how to turn a time string into the
actual time representation used internally. Example timestamp layouts can
be seen in Go’s time documetation [http://golang.org/pkg/time/#pkg-constants]. The default layout is ISO8601 - the same as
Javascript.

		
		timestamp_location (string):

		Time zone in which the timestamps in the text are presumed to be in.
Should be a location name corresponding to a file in the IANA Time Zone
database (e.g. “America/Los_Angeles”), as parsed by Go’s
time.LoadLocation() function (see
http://golang.org/pkg/time/#LoadLocation). Defaults to “UTC”. Not required
if valid time zone info is embedded in every parsed timestamp, since those
can be parsed as specified in the timestamp_layout.

Example:

[myxml_decoder]
type = "PayloadXmlDecoder"

[myxml_decoder.xpath_map]
Count = "/some/path/count"
Name = "/some/path/name"
Pid = "//pid"
Timestamp = "//timestamp"

[myxml_decoder.severity_map]
DEBUG = 1
WARNING = 2
INFO = 3

[myxml_decoder.message_fields]
Pid = "%Pid%"
StatCount = "%Count%"
StatName = "%Name%"
Timestamp = "%Timestamp%"

PayloadXmlDecoder’s xpath_map config subsection supports XPath as
implemented by the xmlpath [http://launchpad.net/xmlpath] library.

		All axes are supported (“child”, “following-sibling”, etc)

		All abbreviated forms are supported (”.”, “//”, etc)

		All node types except for namespace are supported

		Predicates are restricted to [N], [path], and [path=literal] forms

		Only a single predicate is supported per path step

		Richer expressions and namespaces are not supported

New in version 0.4.

StatsToFieldsDecoder

The StatsToFieldsDecoder will parse statsd data in the graphite message
format [http://graphite.wikidot.com/getting-your-data-into-graphite#toc4]
and encode the data into the message fields, in the same format produced by a
StatAccumInput plugin with the emit_in_fields value set to
true. This is useful if you have externally generated statsd string data
flowing through Heka that you’d like to process without having to roll your
own string parsing code.

This decoder has no configuration options, it simply expects to be passed a
message with statsd string data in the payload. Incorrect or malformed content
will cause a decoding error, dropping the message.

The fields format only contains a single “timestamp” field, so any payloads
containing multiple timestamps will end up generating a separate message for
each timestamp. Extra messages will be a copy of the original message except
a) the payload will be empty and b) the unique timestamp and related stats
will be the only message fields.

MultiDecoder

This decoder plugin allows you to specify an ordered list of delegate
decoders. The MultiDecoder will pass the PipelinePack to be decoded to each
of the delegate decoders in turn until decode succeeds. In the case of
failure to decode, MultiDecoder will return an error and recycle the message.

Parameters:

		
		subs:

		A subsection is used to declare the TOML configuration for any delegate
decoders. The default is that no delegate decoders are defined.

		
		order (list of strings):

		PipelinePack objects will be passed in order to each decoder in this list.
Default is an empty list.

		
		name (string):

		Defaults to MultiDecoder-<address of multidecoder>.

		
		log_sub_errors (bool):

		If true, the DecoderRunner will log the errors returned whenever a
delegate decoder fails to decode a message. Defaults to false.

		
		cascade_strategy (string):

		Specifies behavior the MultiDecoder should exhibit with regard to
cascading through the listed decoders. Supports only two valid values:
“first-wins” and “all”. With “first-wins”, each decoder will be tried in
turn until there is a successful decoding, after which decoding will be
stopped. With “all”, all listed decoders will be applied whether or not
they succeed. In each case, decoding will only be considered to have
failed if none of the sub-decoders succeed.

Example (Two PayloadRegexDecoder delegates):

[syncdecoder]
type = "MultiDecoder"
order = ['syncformat', 'syncraw']

[syncdecoder.subs.syncformat]
type = "PayloadRegexDecoder"
match_regex = '^(?P<RemoteIP>\S+) \S+ (?P<User>\S+) \[(?P<Timestamp>[^\]]+)\] "(?P<Method>[A-Z]+) (?P<Url>[^\s]+)[^"]*" (?P<StatusCode>\d+) (?P<RequestSize>\d+) "(?P<Referer>[^"]*)" "(?P<Browser>[^"]*)" ".*" ".*" node_s:\d+\.\d+ req_s:(?P<ResponseTime>\d+\.\d+) retries:\d+ req_b:(?P<ResponseSize>\d+)'
timestamp_layout = "02/Jan/2006:15:04:05 -0700"

[syncdecoder.subs.syncformat.message_fields]
RemoteIP|ipv4 = "%RemoteIP%"
User = "%User%"
Method = "%Method%"
Url|uri = "%Url%"
StatusCode = "%StatusCode%"
RequestSize|B= "%RequestSize%"
Referer = "%Referer%"
Browser = "%Browser%"
ResponseTime|s = "%ResponseTime%"
ResponseSize|B = "%ResponseSize%"
Payload = ""

[syncdecoder.subs.syncraw]
type = "PayloadRegexDecoder"
match_regex = '^(?P<TheData>.*)'

[syncdecoder.subs.syncraw.message_fields]
Somedata = "%TheData%"

Sandbox Decoder

The sandbox decoder provides an isolated execution environment for data parsing
and complex transformations without the need to recompile Heka.

SandboxDecoder Settings

Filters

CounterFilter

Once a second a CounterFilter will generate a message of type heka.counter-
output. The payload will contain text indicating the number of messages that
matched the filter’s message_matcher value during that second (i.e. it
counts the messages the plugin received). Every ten seconds an extra message
(also of type heka.counter-output) goes out, containing an aggregate count
and average per second throughput of messages received.

Parameters: None

Example:

[CounterFilter]
message_matcher = "Type != 'heka.counter-output'"

StatFilter

Filter plugin that accepts messages of a specfied form and uses extracted
message data to generate statsd-style numerical metrics in the form of Stat
objects that can be consumed by a StatAccumulator.

Parameters:

		
		Metric:

		Subsection defining a single metric to be generated

		
		type (string):

		Metric type, supports “Counter”, “Timer”, “Gauge”.

		
		name (string):

		Metric name, must be unique.

		
		value (string):

		Expression representing the (possibly dynamic) value that the
StatFilter should emit for each received message.

		
		stat_accum_name (string):

		Name of a StatAccumInput instance that this StatFilter will use as its
StatAccumulator for submitting generate stat values. Defaults to
“StatAccumInput”.

Example (Assuming you had TransformFilter inserting messages as above):

[StatsdInput]
address = "127.0.0.1:29301"
stat_accum_name = "my_stat_accum"

[my_stat_accum]
flushInterval = 5

[Hits]
type = "StatFilter"
stat_accum_name = "my_stat_accum"
message_matcher = 'Type == "ApacheLogfile"'

[Hits.Metric.bandwidth]
type = "Counter"
name = "httpd.bytes.%Hostname%"
value = "%Bytes%"

[Hits.Metric.method_counts]
type = "Counter"
name = "httpd.hits.%Method%.%Hostname%"
value = "1"

Note

StatFilter requires an available StatAccumulator to be running.

SandboxFilter

The sandbox filter provides an isolated execution environment for data analysis.

SandboxFilter Settings

SandboxManagerFilter

The sandbox manager provides dynamic control (start/stop) of sandbox filters in
a secure manner without stopping the Heka daemon.

SandboxManagerFilter Settings

Outputs

AMQPOutput

Connects to a remote AMQP broker (RabbitMQ) and sends messages to the
specified queue. The message is serialized if specified, otherwise only
the raw payload of the message will be sent. As AMQP is dynamically
programmable, the broker topology needs to be specified.

Parameters:

		
		URL (string):

		An AMQP connection string formatted per the RabbitMQ URI Spec [http://www.rabbitmq.com/uri-spec.html].

		
		Exchange (string):

		AMQP exchange name

		
		ExchangeType (string):

		AMQP exchange type (fanout, direct, topic, or headers).

		
		ExchangeDurability (bool):

		Whether the exchange should be configured as a durable exchange. Defaults
to non-durable.

		
		ExchangeAutoDelete (bool):

		Whether the exchange is deleted when all queues have finished and there
is no publishing. Defaults to auto-delete.

		
		RoutingKey (string):

		The message routing key used to bind the queue to the exchange. Defaults
to empty string.

		
		Persistent (bool):

		Whether published messages should be marked as persistent or transient.
Defaults to non-persistent.

		
		Serialize (bool):

		Whether published messages should be fully serialized. If set to true
then messages will be encoded to Protocol Buffers and have the AMQP
message Content-Type set to application/hekad. Defaults to true.

Example (that sends log lines from the logger):

[AMQPOutput]
url = "amqp://guest:guest@rabbitmq/"
exchange = "testout"
exchangeType = "fanout"
message_matcher = 'Logger == "/var/log/system.log"'

LogOutput

Logs messages to stdout using Go’s log package.

Parameters:

		
		payload_only (bool, optional):

		If set to true, then only the message payload string will be output,
otherwise the entire Message struct will be output in JSON format.

Example:

[counter_output]
type = "LogOutput"
message_matcher = "Type == 'heka.counter-output'"
payload_only = true

FileOutput

Writes message data out to a file system.

Parameters:

		
		path (string):

		Full path to the output file.

		
		format (string, optional):

		Output format for the message to be written. Supports json or
protobufstream, both of which will serialize the entire Message
struct, or text, which will output just the payload string. Defaults to
text.

		
		prefix_ts (bool, optional):

		Whether a timestamp should be prefixed to each message line in the file.
Defaults to false.

		
		perm (string, optional):

		File permission for writing. A string of the octal digit representation.
Defaults to “644”.

Example:

[counter_file]
type = "FileOutput"
message_matcher = "Type == 'heka.counter-output'"
path = "/var/log/heka/counter-output.log"
prefix_ts = true
perm = "666"

TcpOutput

Output plugin that serializes messages into the Heka protocol format and
delivers them to a listening TCP connection. Can be used to deliver messages
from a local running Heka agent to a remote Heka instance set up as an
aggregator and/or router.

Parameters:

		
		address (string):

		An IP address:port to which we will send our output data.

Example:

[aggregator_output]
type = "TcpOutput"
address = "heka-aggregator.mydomain.com:55"
message_matcher = "Type != 'logfile' && Type != 'heka.counter-output' && Type != 'heka.all-report'"

DashboardOutput

Specialized output plugin that listens for certain Heka reporting message
types and generates JSON data which is made available via HTTP for use in web
based dashboards and health reports.

Parameters:

		
		ticker_interval (uint):

		Specifies how often, in seconds, the dashboard files should be updated.
Defaults to 5.

		
		message_matcher (string):

		Defaults to “Type == ‘heka.all-report’ || Type == ‘heka.sandbox-output’
|| Type == ‘heka.sandbox-terminated’”. Not recommended to change this
unless you know what you’re doing.

		
		address (string):

		An IP address:port on which we will serve output via HTTP. Defaults to
“0.0.0.0:4352”.

		
		working_directory (string):

		File system directory into which the plugin will write data files and from
which it will serve HTTP. The Heka process must have read / write access
to this directory. Relative paths will be evaluated relative to the Heka
base directory. Defaults to “dashboard” (i.e. “$(BASE_DIR)/dashboard”).

		
		static_directory (string):

		File system directory where the Heka dashboard source code can be found.
The Heka process must have read access to this directory. Relative paths
will be evaluated relative to the Heka base directory. Defaults to
“/usr/share/heka/dasher”.

Example:

[DashboardOutput]
ticker_interval = 30

ElasticSearchOutput

Output plugin that serializes messages into JSON structures and uses HTTP requests
to insert them into an ElasticSearch database.

Parameters:

		
		cluster (string):

		ElasticSearch cluster name. Defaults to “elasticsearch”

		
		index (string):

		Name of the ES index into which the messages will be inserted.
If Field Name|Type|Hostname|Pid|UUID|Logger|EnvVersion|Severity
are placed between within a %{}, it will be interpolated to their message value.
Defaults to “heka-%{2006.01.02}”.

		
		type_name (string):

		Name of ES record type to create. Defaults to “message”.
If Field Name|Type|Hostname|Pid|UUID|Logger|EnvVersion|Severity
are placed between within a %{}, it will be interpolated to their message value.

		
		flush_interval (int):

		Interval at which accumulated messages should be bulk indexed into
ElasticSearch, in milliseconds. Defaults to 1000 (i.e. one second).

		
		flush_count (int):

		Number of messages that, if processed, will trigger them to be bulk
indexed into ElasticSearch. Defaults to 10.

		
		format (string):

		Message serialization format, either “clean”, “logstash_v0”, “payload” or
“raw”. “clean” is a more concise JSON representation of the message,
“logstash_v0” outputs in a format similar to Logstash’s original (i.e.
“version 0”) ElasticSearch schema, “payload” passes the message payload
directly into ElasticSearch, and “raw” is a full JSON representation of
the message. Defaults to “clean”.

		
		fields ([]string):

		If the format is “clean”, then the ‘fields’ parameter can be used to
specify that only specific message data should be indexed into
ElasticSearch. Available fields to choose are “Uuid”, “Timestamp”, “Type”,
“Logger”, “Severity”, “Payload”, “EnvVersion”, “Pid”, “Hostname”, and
“Fields” (where “Fields” causes the inclusion of any and all dynamically
specified message fields. Defaults to all.

		
		timestamp (string):

		Format to use for timestamps in generated ES documents. Defaults to
“2006-01-02T15:04:05.000Z”.

		
		server (string):

		ElasticSearch server URL. Supports http://, https:// and udp:// urls.
Defaults to “http://localhost:9200”.

		
		ESIndexFromTimestamp (bool):

		When generating the index name use the timestamp from the message
instead of the current time. Defaults to false.

Example:

[ElasticSearchOutput]
message_matcher = "Type == 'sync.log'"
cluster = "elasticsearch-cluster"
index = "synclog-%{2006.01.02.15.04.05}"
type_name = "sync.log.line"
server = "http://es-server:9200"
format = "clean"
flush_interval = 5000
flush_count = 10

WhisperOutput

WhisperOutput plugins parse the “statmetric” messages generated by a
StatAccumulator and write the extracted counter, timer, and gauge data out to
a graphite [http://graphite.wikidot.com/] compatible whisper database [http://graphite.wikidot.com/whisper] file tree structure.

Parameters:

		
		base_path (string):

		Path to the base directory where the whisper file tree will be written.
Absolute paths will be honored, relative paths will be calculated relative
to the Heka base directory. Defaults to “whisper” (i.e.
“$(BASE_DIR)/whisper”).

		
		default_agg_method (int):

		Default aggregation method to use for each whisper output file. Supports
the following values:

		Unknown aggregation method.

		Aggregate using averaging. (default)

		Aggregate using summation.

		Aggregate using last received value.

		Aggregate using maximum value.

		Aggregate using minimum value.

		
		default_archive_info ([][]int):

		Default specification for new whisper db archives. Should be a sequence of
3-tuples, where each tuple describes a time interval’s storage policy:
[<offset> <# of secs per datapoint> <# of datapoints>] (see whisper docs for more info). Defaults
to:

[[0, 60, 1440], [0, 900, 8], [0, 3600, 168], [0, 43200, 1456]]

The above defines four archive sections. The first uses 60 seconds for
each of 1440 data points, which equals one day of retention. The second
uses 15 minutes for each of 8 data points, for two hours of retention. The
third uses one hour for each of 168 data points, or 7 days of retention.
Finally, the fourth uses 12 hours for each of 1456 data points,
representing two years of data.

		
		folder_perm (string):

		Permission mask to be applied to folders created in the whisper database
file tree. Must be a string representation of an octal integer. Defaults
to “700”.

Example:

[WhisperOutput]
message_matcher = "Type == 'heka.statmetric'"
default_agg_method = 3
default_archive_info = [[0, 30, 1440], [0, 900, 192], [0, 3600, 168], [0, 43200, 1456]]
folder_perm = "755"

NagiosOutput

Specialized output plugin that listens for Nagios external command message types
and generates an HTTP request against the Nagios cmd.cgi API. Currently the
output will only send passive service check results. The message payload must
consist of a state followed by a colon and then the message i.e.,
“OK:Service is functioning properly”. The valid states are:
OK|WARNING|CRITICAL|UNKNOWN. Nagios must be configured with a service name that
matches the Heka plugin instance name and the hostname where the plugin is
running.

Parameters:

		
		url (string, optional):

		An HTTP URL to the Nagios cmd.cgi. Defaults to “http://localhost/nagios/cgi-bin/cmd.cgi”.

		
		username (string, optional):

		Username used to authenticate with the Nagios web interface. Defaults to “”.

		
		password (string, optional):

		Password used to authenticate with the Nagios web interface. Defaults to “”.

		
		responseheadertimeout (uint, optional):

		Specifies the amount of time, in seconds, to wait for a server’s response
headers after fully writing the request. Defaults to 2.

Example configuration to output alerts from SandboxFilter plugins:

[NagiosOutput]
url = "http://localhost/nagios/cgi-bin/cmd.cgi"
username = "nagiosadmin"
password = "nagiospw"
message_matcher = "Type == 'heka.sandbox-output' && Fields[payload_type] == 'nagios-external-command' && Fields[payload_name] == 'PROCESS_SERVICE_CHECK_RESULT'"

Example Lua code to generate a Nagios alert:

output("OK:Alerts are working!")
inject_message("nagios-external-command", "PROCESS_SERVICE_CHECK_RESULT")

CarbonOutput

CarbonOutput plugins parse the “stat metric” messages generated by a
StatAccumulator and write the extracted counter, timer, and gauge data out to
a graphite [http://graphite.wikidot.com/] compatible carbon [http://graphite.wikidot.com/carbon] daemon. Output is written over
a TCP socket using the plaintext [http://graphite.readthedocs.org/en/1.0/feeding-carbon.html#the-plaintext-protocol] protocol.

Parameters:

		
		address (string):

		An IP address:port on which this plugin will write to.
Defaults to: localhost:2003

Example:

[CarbonOutput]
message_matcher = "Type == 'heka.statmetric'"
address = "localhost:2003"

See Also

hekad(1), hekad.config(5)

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

search.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

_static/comment-close.png

sandbox/decoder.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

Sandbox Decoder

The sandbox decoder provides an isolated execution environment for data parsing
and complex transformations without the need to recompile Heka.

SandboxDecoder Settings

		
		script_type (string):

		The language the sandbox is written in. Currently the only valid option is ‘lua’.

		
		filename (string):

		The path to the sandbox code; if specified as a relative path it will be appended to Heka’s global base_dir.

		
		memory_limit (uint):

		The number of bytes the sandbox is allowed to consume before being terminated (max 8MiB, default max).

		
		instruction_limit (uint):

		The number of instructions the sandbox is allowed the execute during the process_message function before being terminated (max 1M, default max).

		
		output_limit (uint):

		The number of bytes the sandbox output buffer can hold before before being terminated (max 63KiB, default max). Anything less than 1KiB will default to 1KiB.

		
		config (object):

		A map of configuration variables available to the sandbox via read_config. The map consists of a string key with: string, bool, int64, or float64 values.

Example

[sql_decoder]
type = "SandboxDecoder"
script_type = "lua"
filename = "sql_decoder.lua"

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

_static/images/bg-gradient-sand.png

_static/up-pressed.png

_static/up.png

glossary.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

Glossary

		DecoderPoolSize

		A Heka configuration setting which specifies the number of decoder
sets that should be created to handle decoding of incoming message
data.

		hekad

		Daemon that routes messages from inputs to their outputs applying
filters as configured.

		Message

		A message is the atomic unit of data that Hekad deals with. It
is a data structure related to a single event happening in the
outside world, such as a log file entry, a counter increment,
an application exception, a notification message, etc. It is
specified as a Message struct in the heka/message packages
message.go [https://github.com/mozilla-services/heka/blob/master/message/message.go] file.

		Message matcher

		A configuration option for filter and output plugins that specifies
which messages that plugin accepts for processing. The Heka router
will evaluate the message matchers against every message to and will
deliver the message when the match is positive.

		Pipeline

		Messages being processed by Hekad are passed through a specific set of
plugins. A set of plugins to be applied to a message is often called
(somewhat informally) a Heka pipeline.

		PipelinePack

		In addition to the core message data, Hekad needs to track some
related state and configuration information for each message. To this
end there is a PipelinePack struct defined in the heka/pipeline
package’s pipeline_runner.go [https://github.com/mozilla-services/heka/blob/master/pipeline/pipeline_runner.go] file.
PipelinePack objects are what get passed in to the various Hekad
plugins as messages flow through the pipelines.

		Plugin

		Hekad plugins are functional units that perform specific actions on or
with messages. There are four distinct types of plugins: inputs,
decoders, filters, and outputs.

		PluginChanSize

		A Heka configuration setting which specifies the size of the input
channel buffer for the various Heka plugins. Defaults to 50.

		PluginHelper

		An interface that provides access to certain Heka internals that may
be required by plugins in the course of their activity. Defined in
config.go [https://github.com/mozilla-services/heka/blob/master/pipeline/config.go].

		PluginRunner

		A plugin-specific helper object that manages the lifespan of a given
plugin and handles most details of interaction w/ the greater Heka
environment. Comes in four variants, each tailored to a specific
plugin type (i.e. InputRunner, DecoderRunner, FilterRunner,
OutputRunner).

		PoolSize

		A Heka configuration setting which specifies the number of
PipelinePack structs that will be created. This value specifies the
maximum number of incoming messages that Heka can be processing at any
one time.

		Router

		Component in the Heka pipeline that accepts messages and delivers them
to the appropriate filter and output plugins, as specified by the
plugins’ message matcher values.

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_themes/mozilla/README.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

Mozilla sphinx’s theme

This is a version of Mozilla’s sandstone theme, for the Sphinx documentation
engine. [http://sphinx.pocoo.org].

Okay, how do I install it?

You need to install it locally and configure Sphinx to use it. In your conf.py file:

import mozilla_sphinx_theme
import os

html_theme_path = [os.path.dirname(mozilla_sphinx_theme.__file__)]

html_theme = 'mozilla'

Also, take care and remove the pygments_style configuration, as it may not be
of the better taste with the mozilla’s theme.

Enjoy!

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

_static/file.png

sandbox/filter.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

Sandbox Filter

The sandbox filter provides an isolated execution environment for data analysis.
The output generated by the sandbox is injected into the payload of a new
message for further processing or to be output.

SandboxFilter Settings

		Common Filter / Output Parameters

		
		script_type (string):

		The language the sandbox is written in. Currently the only valid option is ‘lua’.

		
		filename (string):

		For a static configuration this is the path to the sandbox code; if specified as a relative path it will be appended to Heka’s global base_dir. The filename must be unique between static plugins, since the global data is preserved using this name. For a dynamic configuration the filename is ignored and the the physical location on disk is controlled by the SandboxManagerFilter.

		
		preserve_data (bool):

		True if the sandbox global data should be preserved/restored on Heka shutdown/startup. The preserved data is stored along side the sandbox code i.e. counter.lua.data so Heka must have read/write permissions to that directory.

		
		memory_limit (uint):

		The number of bytes the sandbox is allowed to consume before being terminated (max 8MiB, default 32767).

		
		instruction_limit (uint):

		The number of instructions the sandbox is allowed the execute during the process_message/timer_event functions before being terminated (max 1M, default 1000).

		
		output_limit (uint):

		The number of bytes the sandbox output buffer can hold before before being terminated (max 63KiB, default 1024). Anything less than 1KiB will default to 1KiB.

		
		profile (bool):

		When true a statistically significant number of ProcessMessage timings are immediately captured before reverting back to the regular sampling interval. The main purpose is for more accurate sandbox comparison/tuning/optimization.

		
		config (object):

		A map of configuration variables available to the sandbox via read_config. The map consists of a string key with: string, bool, int64, or float64 values.

Example

[hekabench_counter]
type = "SandboxFilter"
message_matcher = "Type == 'hekabench'"
ticker_interval = 1
script_type = "lua"
filename = "counter.lua"
preserve_data = true
memory_limit = 32767
instruction_limit = 1000
output_limit = 1024
profile = false

[hekabench_counter.config]
rows = 1440
sec_per_row = 60

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

man/config.html

 Navigation

 		
 index

 		hekad 0.4.1 documentation »

hekad

Description

A hekad configuration file specifies what inputs, decoders, filters,
and outputs will be loaded. The configuration file is in TOML [https://github.com/mojombo/toml] format. TOML looks is very similar
to INI configuration formats, but with slightly more rich data
structures and nesting support.

The config file is broken into sections, with each section representing
a single instance of a plugin. The section name specifies the name of
the plugin, and the “type” parameter specifies the plugin type; this
must match one of the types registered via the
pipeline.RegisterPlugin function. For example, the following section
describes a plugin named “tcp:5565”, an instance of Heka’s plugin type
“TcpInput”:

[tcp:5565]
type = "TcpInput"
parser_type = "message.proto"
decoder = "ProtobufDecoder"
address = ":5565"

If you choose a plugin name that also happens to be a plugin type name,
then you can omit the “type” parameter from the section and the
specified name will be used as the type. Thus, the following section
describes a plugin named “TcpInput”, also of type “TcpInput”:

[TcpInput]
address = ":5566"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

Note that it’s fine to have more than one instance of the same plugin
type, as long as their configurations don’t interfere with each other.

Any values other than “type” in a section, such as “address” in the
above examples, will be passed through to the plugin for internal
configuration (see Plugin Configuration).

A ProtobufDecoder will be automatically setup if not specified
explicitly in the configuration file.

If a plugin fails to load during startup, hekad will exit at startup.
When hekad is running, if a plugin should fail (due to connection loss,
inability to write a file, etc.) then hekad will either shut down or
restart the plugin if the plugin supports restarting. When a plugin is
restarting, hekad will likely stop accepting messages until the plugin
resumes operation (this applies only to filters/output plugins).

Plugins specify that they support restarting by implementing the
Restarting interface (see restarting_plugins). Plugins
supporting Restarting can have their restarting behavior
configured.

An internal diagnostic runner runs every 30 seconds to sweep the packs
used for messages so that possible bugs in heka plugins can be reported
and pinned down to a likely plugin(s) that failed to properly recycle
the pack.

Full documentation on available plugins and settings for each one are
in the hekad.plugin(5) pages.

Example hekad.toml File

[hekad]
cpuprof = "/var/log/hekad/cpuprofile.log"
decoder_poolsize = 10
max_message_loops = 4
max_process_inject = 10
max_timer_inject = 10
maxprocs = 10
memprof = "/var/log/hekad/memprof.log"
plugin_chansize = 10
poolsize = 100

Listens for Heka messages on TCP port 5565.
[TcpInput]
address = ":5565"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

Writes output from `CounterFilter`, `lua_sandbox`, and Heka's internal
reports to stdout.
[debug]
type = "LogOutput"
message_matcher = "Type == 'heka.counter-output' || Type == 'heka.all-report' || Type == 'heka.sandbox-output'"

Counts throughput of messages sent from a Heka load testing tool.
[CounterFilter]
message_matcher = "Type == 'hekabench' && EnvVersion == '0.8'"
output_timer = 1

Defines a sandboxed filter that will be written in Lua.
[lua_sandbox]
type = "SandboxFilter"
message_matcher = "Type == 'hekabench' && EnvVersion == '0.8'"
output_timer = 1
script_type = "lua"
preserve_data = true
filename = "lua/sandbox.lua"
memory_limit = 32767
instruction_limit = 1000
output_limit = 1024

Roles

hekad is frequently configured for various roles in a larger cluster:

		Agent - Single default filter that passes all messages directly to
another hekad daemon on a separate machine configured as an
Router.

		Aggregator - Runs filters that can roll-up statistics (similar to
statsd), and handles aggregating similar messages before saving them
to a back-end directly or possibly forwarding them to a hekad
router.

		Router - Collects input messages from multiple sources (including
other hekad daemons acting as Agents), rolls up stats, and routes
messages to appropriate back-ends.

A single hekad daemon could act as all the roles in smaller
deployments.

Configuring Restarting Behavior

Plugins that support being restarted have a set of options that govern
how the restart is handled. If preferred, the plugin can be configured
to not restart at which point hekad will exit, or it could be restarted
only 100 times, or restart attempts can proceed forever.

Adding the restarting configuration is done by adding a config section
to the plugins’ config called retries. A small amount of jitter will
be added to the delay between restart attempts.

Parameters:

		
		max_jitter (string):

		The longest jitter duration to add to the delay between restarts. Jitter
up to 500ms by default is added to every delay to ensure more even
restart attempts over time.

		
		max_delay (string):

		The longest delay between attempts to restart the plugin. Defaults to
30s (30 seconds).

		
		delay (string):

		The starting delay between restart attempts. This value will be the
initial starting delay for the exponential back-off, and capped to
be no larger than the max_delay. Defaults to 250ms.

		
		max_retries (int):

		Maximum amount of times to attempt restarting the plugin before giving
up and shutting down hekad. Use 0 for no retry attempt, and -1 to
continue trying forever (note that this will cause hekad to halt
possibly forever if the plugin cannot be restarted).

Example (UdpInput does not actually support nor need restarting,
illustrative purposes only):

[UdpInput]
address = "127.0.0.1:4880"
parser_type = "message.proto"
decoder = "ProtobufDecoder"

[UdpInput.retries]
max_delay = 30s
delay = 250ms
max_retries = 5

See Also

hekad(1), hekad.plugin(5)

 © Copyright 2013, Mozilla.
 Created using Sphinx 1.1.3.

_static/down-pressed.png

_static/images/bg-sand.png

