Heka Documentation
Release 0.10.0b2

Mozilla

November 30, 2015

Contents

1 hekad 3
2 hekad Command Line Options 5
2.1 Imstallingo 5
2.2 Getting Started L L e e e e 8
2.3 Configuringhekad L e e e e e e 26
24 INPULS .« .t e e e e e e e e e e e e e e e e 30
2.5 SPHHETS . . . o o o e e e e e e e e e e e e e e e e e 45
2.6 Decoders e e e e e e e e e e 48
2.7 Filters e 71
2.8 Encoders e e 86
2.9 OUIPULS .« . v v o e e e e e e e e e e e e e e e e e e e 97
2.10 Monitoring Internal Stateo 109
2.11 Extending Heka e 111
2.12 HekaMessage o i i it e e e e e e 126
2.13 Message Matcher Syntax oL e e e e e e e 127
2,14 SandboX e 129
2.15 Testing Heka o o L e e e e e 179
2.16 Configuring TLS o L e e e e e e 182
2.17 Configuring Buffering oL 184
2.18 Changelog e e 185
2.19 Transitional Filter and Output APIs e e e 211
220 GIOSSATY & v v v e 213
2.21 Circular Buffer Graph Annotation (Alerts) o v i i it 214
2.22 JSON Payload Transform e 216
2.23 Common Sandbox Parameters 217
224 LOGSIEAMET . . . v v v v v v e e i e 218
225 hekad e 224
226 hekad e 227
227 Inputso e e e 227
2.28 SPHUETS . . . o o o o e e e e e e e e e e e e 242
229 Decoderso e e e e 244
230 Filters o o e e e 267
231 Encoders e e 282
232 OUPULS .« . v v o e 293
233 hekad 305
3 Indices and tables 309

Heka Documentation, Release 0.10.0b2

Heka is an open source stream processing software system developed by Mozilla. Heka is a “Swiss Army Knife” type
tool for data processing, useful for a wide variety of different tasks, such as:

Loading and parsing log files from a file system.

Accepting statsd type metrics data for aggregation and forwarding to upstream time series data stores such as
graphite or InfluxDB.

Launching external processes to gather operational data from the local system.
Performing real time analysis, graphing, and anomaly detection on any data flowing through the Heka pipeline.

Shipping data from one location to another via the use of an external transport (such as AMQP) or directly (via
TCP).

Delivering processed data to one or more persistent data stores.

The following resources are available to those who would like to ask questions, report problems, or learn more:

Mailing List: https://mail.mozilla.org/listinfo/heka
Issue Tracker: https://github.com/mozilla-services/heka/issues
Github Project: https://github.com/mozilla-services/heka/

IRC: #heka channel on irc.mozilla.org

Heka is a heavily plugin based system. Common operations such as adding data to Heka, processing it, and writing it
out are implemented as plugins. Heka ships with numerous plugins for performing common tasks.

There

Inputs

are six different types of Heka plugins:

Input plugins acquire data from the outside world and inject it into the Heka pipeline. They can do this by
reading files from a file system, actively making network connections to acquire data from remote servers,
listening on a network socket for external actors to push data in, launching processes on the local system
to gather arbitrary data, or any other mechanism.

Input plugins must be written in Go.

Splitters

Splitter plugins receive the data that is being acquired by an input plugin and slice it up into individual
records. They must be written in Go.

Decoders

Decoder plugins convert data that comes in through the Input plugins to Heka’s internal Message data
structure. Typically decoders are responsible for any parsing, deserializing, or extracting of structure
from unstructured data that needs to happen.

Decoder plugins can be written entirely in Go, or the core logic can be written in sandboxed Lua code.

Filters

Filter plugins are Heka’s processing engines. They are configured to receive messages matching certain
specific characteristics (using Heka’s Message Matcher Syntax) and are able to perform arbitrary moni-
toring, aggregation, and/or processing of the data. Filters are also able to generate new messages that can
be reinjected into the Heka pipeline, such as summary messages containing aggregate data, notification
messages in cases where suspicious anomalies are detected, or circular buffer data messages that will
show up as real time graphs in Heka’s dashboard.

Filters can be written entirely in Go, or the core logic can be written in sandboxed Lua code. It is also
possible to configure Heka to allow Lua filters to be dynamically injected into a running Heka instance

Contents 1

https://mozilla.org
https://github.com/etsy/statsd/
http://graphite.wikidot.com/
http://influxdb.org/
https://mail.mozilla.org/listinfo/heka
https://github.com/mozilla-services/heka/issues
https://github.com/mozilla-services/heka/

Heka Documentation, Release 0.10.0b2

without needing to reconfigure or restart the Heka process, nor even to have shell access to the server on
which Heka is running.

Encoders

Encoder plugins are the inverse of Decoders. They generate arbitrary byte streams using data extracted
from Heka Message structs. Encoders are embedded within Output plugins; Encoders handle the serial-
ization, Outputs handle the details of interacting with the outside world.

Encoder plugins can be written entirely in Go, or the core logic can be written in sandboxed Lua code.
Outputs

Output plugins send data that has been serialized by an Encoder to some external destination. They handle
all of the details of interacting with the network, filesystem, or any other outside resource. They are, like
Filters, configured using Heka’s Message Matcher Syntax so they will only receive and deliver messages
matching certain characteristics.

Output plugins must be written in Go.

Information about developing plugins in Go can be found in the Extending Heka section. Details about using Lua
sandboxes for Decoder, Filter, and Encoder plugins can be found in the Sandbox section.

2 Contents

CHAPTER 1

hekad

The core of the Heka system is the hekad daemon. A single hekad process can be configured with any number of

plugins, simultaneously performing a variety of data gathering, processing, and shipping tasks. Details on how to
configure a hekad daemon are in the Configuring hekad section.

Heka Documentation, Release 0.10.0b2

4 Chapter 1. hekad

CHAPTER 2

hekad Command Line Options

—version Output the version number, then exit.

—config config_path Specify the configuration file or directory to use; the default is /etc/hekad.toml. If config_path
resolves to a directory, all files in that directory must be valid TOML files. (See hekad.config(5).)

Contents:

2.1 Installing

2.1.1 Binaries

hekad releases are available on the Github project releases page. Binaries are available for Linux and OSX, with
packages for Debian and RPM based distributions.

2.1.2 From Source

hekad requires a Go work environment to be setup for the binary to be built; this task is automated by the build
process. The build script will override the Go environment for the shell window it is executed in. This creates an
isolated environment that is intended specifically for building and developing Heka. The build script should be be
sourced every time a new shell is opened for Heka development to ensure the correct dependencies are found and
being used. To create a working hekad binary for your platform you’ll need to install some prerequisites. Many of
these are standard on modern Unix distributions and all are available for installation on Windows systems.

Prerequisites (all systems):
* CMake 3.0.0 or greater http://www.cmake.org/cmake/resources/software.html
* Git http://git-scm.com/download
* Go 1.4 or greater http://golang.org/dl/
* Mercurial http://mercurial.selenic.com/wiki/Download

e Protobuf 2.3 or greater (optional - only needed if message.proto is modified)
http://code.google.com/p/protobuf/downloads/list

» Sphinx (optional - used to generate the documentation) http://sphinx-doc.org/
* An internet connection to fetch sub modules

Prerequisites (Unix):

https://github.com/mozilla-services/heka/releases
http://www.cmake.org/cmake/resources/software.html
http://git-scm.com/download
http://golang.org/dl/
http://mercurial.selenic.com/wiki/Download
http://code.google.com/p/protobuf/downloads/list
http://sphinx-doc.org/

Heka Documentation, Release 0.10.0b2

» CA certificates (most probably already installed, via the ca-certificates package)
* make
* gce and libc6 development headers (package glibc-devel or libc6-dev)
* patch
* GeolP development files (optional)
* dpkg, debhelper and fakeroot (optional)
 rpmbuild (optional)
 packagemaker (optional)
Prerequisites (Windows):

* MinGW http://sourceforge.net/projects/tdm-gcc/

Build Instructions

1. Check out the heka repository:

git clone https://github.com/mozilla-services/heka

2. Source (Unix-y) or run (Windows) the build script in the heka directory:

cd heka
source build.sh # Unix (or °. build.sh'; must be sourced to properly setup the
build.bat # Windows

You will now have a hekad binary in the build/heka/bin directory.

3. (Optional) Run the tests to ensure a functioning hekad:

ctest # All, see note
Or use the makefile target
make test # Unix

mingw32-make test # Windows

Note: In addition to the standard test build target, ctest can be called directly providing much greater control over the

tests being run and the generated output (see ctest —help). i.e., ‘ctest -R pi’ will only run the pipeline unit test.

4. Runmake install to install libs and modules into a usable location:

make install # Unix
mingw32-make install # Windows

This will install all of Heka’s required support libraries, modules, and other files into a usable share_dir, at

the following path:

/path/to/heka/repo/heka/share/heka

5. Specify Heka configuration:

When setting up your Heka configuration, you’ll want to make sure you set the global share_dir setting to

point to the path above. The [hekad] section might look like this:

[hekad]
maxprocs = 4
share_dir = "/path/to/heka/repo/heka/share/heka"

6 Chapter 2. hekad Command Line Options

environment)

http://sourceforge.net/projects/tdm-gcc/

Heka Documentation, Release 0.10.0b2

Clean Targets
* clean-heka - Use this target any time you change branches or pull from the Heka repository, it will ensure the
Go workspace is in sync with the repository tree.

¢ clean - You will never want to use this target (it is autogenerated by cmake), it will cause all external depen-
dencies to be re-fetched and re-built. The best way to ‘clean-all’ is to delete the build directory and re-run the
build.(shlbat) script.

Build Options

There are two build customization options that can be specified during the cmake generation process.
e INCLUDE_MOZSVC (bool) Include the Mozilla services plugins (default Unix: true, Windows: false).
* BENCHMARK (bool) Enable the benchmark tests (default false)

For example: to enable the benchmark tests in addition to the standard unit tests type ‘cmake -DBENCHMARK=true
.. in the build directory.

2.1.3 Building hekad with External Plugins

It is possible to extend hekad by writing input, decoder, filter, or output plugins in Go (see Extending Heka).
Because Go only supports static linking of Go code, your plugins must be included with and registered into
Heka at compile time. The build process supports this through the use of an optional cmake file {heka
root}/cmake/plugin_loader.cmake. A cmake function has been provided add_external_plugin taking the repository
type (git, svn, or hg), repository URL, the repository tag to fetch, and an optional list of sub-packages to be initialized.

add_external_plugin(git https://github.com/mozilla-services/heka-mozsvc-plugins 6fe
add_external_plugin(git https://github.com/example/path <tag> util filepath)
add_external_plugin(git https://github.com/bellycard/heka-sns—-input :local)

The ':local' tag is a special case, it copies {heka root}/externals/{plugin_name}
work environment every time "make’ is run. When local development is complete, an
1s checked in, the value can simply be changed to the correct tag to make it 'liy
i.e. {heka root}/externals/heka-sns—input —-> {heka root}/build/heka/src/github.cq

The preceeding entry clones the heka-mozsvc-plugins git repository into the Go work environment, checks out SHA
6fe574dbd32a21£5d55836082a9d2339925edd2a7, and imports the package into hekad when make is run. By adding an
init() function in your package you can make calls into pipeline.RegisterPlugin to register your plugins with Heka’s
configuration system.

2.1.4 Creating Packages

Installing packages on a system is generally the easiest way to deploy hekad. These packages can be easily created
after following the above From Source directions:

1. Run cpack to build the appropriate package(s) for the current system:

574dbd32a21€£"5

into the Go
d the source
e!.
m/bellycard/F

cpack # All

Or use the makefile target

make package # Unix (no deb, see below)

make deb # Unix (if dpkg is available see below)

mingw32-make package # Windows

2.1. Installing 7

http://golang.org/doc/effective_go.html#init

Heka Documentation, Release 0.10.0b2

The packages will be created in the build directory.

Note: You will need rpmbuild installed to build the rpms.

See also:

Setting up an rpm-build environment

Note: For file name convention reasons, deb packages won’t be created by running cpack or make package, even on
a Unix machine w/ dpkg installed. Instead, running source build.sh on such a machine will generate a Makefile with a

separate ‘deb’ target, so you can run make deb to generate the appropriate deb package. Additionnaly, you can add a
suffix to the package version, for example:

CPACK_DEBIAN_PACKAGE_VERSION_SUFFIX=+deb8 make deb

2.2 Getting Started

A brand new Heka installation is something of a blank canvas, full of promise but not actually interesting on its own.
One of the challenges with a highly flexible tool like Heka is that newcomers can easily become overwhelmed by the
wide assortment of features and options, making it difficult to understand exactly how to begin. This document will
try to address this issue by taking readers through the process of configuring a hekad installation that demonstrates a
number of Heka’s common use cases, hopefully providing enough context that users will be able to then adjust and
extend the given examples to meet their own particular needs.

When we’re done our configuration will have Heka performing the following tasks:
* Accepting data from a statsd client over UDP.
» Forwarding aggregated statsd data on to both a Graphite Carbon server and an InfluxDB server.
* Generating a real time graph of a specific set of statsd statistics.
* Loading and parsing a rotating stream of nginx access log files.

* Generating JSON structures representing each request loaded from the Nginx log files and sending them on to
an ElasticSearch database cluster.

* Generating a real time graph of the HTTP response status codes of the requests that were recorded in the nginx
access logs.

* Performing basic algorithmic anomaly detection on HTTP status code data, sending notification messages via
email when such events occur.

But before we dig in to that, let’s make sure everything is working by trying out a very simple setup.

2.2.1 Simplest Heka Config

One of the simplest Heka configurations possible is one that loads a single file from the local file system and then
outputs the contents of that file to stdout. The following is an example of such a configuration:

[LogstreamerInput]

log_directory = "/var/log"
file_match = 'auth\.log'
[PayloadEncoder]
append_newlines = false

8 Chapter 2. hekad Command Line Options

http://wiki.centos.org/HowTos/SetupRpmBuildEnvironment

Heka Documentation, Release 0.10.0b2

[LogOutput]
message_matcher = "TRUE"
encoder = "PayloadEncoder"

Heka is configured via one or more TOML format configuration files, each of which is comprised of one or more
sections. The configuration above consists of three sections, the first of which specifies a LogstreamerInput, Heka’s
primary mechanism for loading files from the local file system. This one is loading /var/log/auth.log, but you can
change this to load any other file by editing the log_directory setting to point to the folder where the file lives and
the file_match setting to a regular expression that uniquely matches the filename. Note the single quotes (‘auth\.log’)
around the regular expression; this is TOML’s way of specifying a raw string, which means we don’t need to escape
the regular expression’s backslashes like we would with a regular string enclosed by double quotes (“auth\.log”).

In most real world cases a LogstreamerInput would include a decoder setting, which would parse the contents of the
file to extract data from the text format and map them onto a Heka message schema. In this case, however, we stick
with the default behavior, where Heka creates a new message for each line in the log file, storing the text of the log
line as the payload of the Heka message.

The next two sections tell Heka what to do with the messages that the LogstreamerInput is generating. The LogOutput
simply writes data out to the Heka process’s stdout. We set message_matcher = “TRUE” to specify that this output
should capture every single message that flows through the Heka pipeline. The encoder setting tells Heka to use the
PayloadEncoder that we’ve configured, which extracts the payload from each captured message and uses that as the
raw data that the output will send.

To see whether or not you have a functional Heka system, you can create a file called sanity_check.toml and paste in
the above configuration, adjusting the LogstreamerInput’s settings to point to another file if necessary. Then you can
run Heka using hekad -config=/path/to/sanity_check.toml, and you should see the contents of the log file printed out
to the console. If any new lines are written to the log file that you’re loading, Heka will notice and will write them out
to stdout in real time.

Note that the LogstreamerInput keeps track of how far it has gotten in a particular file, so if you stop Heka using
ctrl-c and then restart it you will not see the same data. Heka stores the current location in a “seekjournal” file, at
/var/cache/hekad/logstreamer/LogstreamerInput by default. If you delete this file and then restart Heka you should
see it load the entire file from the beginning again.

Congratulations! You’ve now successfully run Heka with a full, working configuration. But clearly there are much
simpler tools to use if all you want to do is write the contents of a log file out to stdout. Now that we’ve got an initial
success under our belt, let’s take a deeper dive into a much more complex Heka configuration that actually handles
multiple real world use cases.

2.2.2 Global Configuration

As mentioned above, Heka is configured using TOML configuration files. Most sections of the TOML configuration
contain information relevant to one of Heka’s plugins, but there is one section entitled hekad which allows you to
tweak a number of Heka’s global configuration options. In many cases the defaults for most of these options will
suffice, and your configuration won’t need a hekad section at all. A few of the options are worth looking at here,
however:

¢ maxprocs (int, default 1): This setting corresponds to Go’s GOMAXPROCS environment variable. It speci-
fies how many CPU cores the hekad process will be allowed to use. The best choice for this setting depends
on a number of factors such as the volume of data Heka will be processing, the number of cores on the
machine on which Heka is running, and what other tasks the machine will be performing. For dedicated
Heka aggregator machines, this should usually be equal to the number of cpu cores available, or perhaps
number of cores minus one, while for Heka processes running on otherwise busy boxes one or two is
probably a better choice.

2.2. Getting Started 9

https://github.com/toml-lang/toml

Heka Documentation, Release 0.10.0b2

¢ base_dir (string, default ‘/var/cache/hekad’ or ‘c:\var\cache\hekad’): In addition to the location of the con-
figuration files, there are two directories that are important to a running hekad process. The first of these
is called the base_dir, which is a working directory where Heka will be storing information crucial to its
functioning, such as seekjournal files to track current location in a log stream, or sandbox filter aggregation
data that is meant to survive between Heka restarts. It is of course important that the user under which the
hekad process is running has write access to the base_dir.

* share_dir (string, default ‘/usr/share/heka’ or ‘c:\usr\share\heka’): The second directory important to
Heka’s functioning is called the share_dir. This is a place where Heka expects to find certain static re-
sources that it needs, such as the HTML/javascript source code used by the dashboard output, or the source
code to various Lua based plugins. The user owning the hekad process requires read access to this folder,
but should not have write access.

It’s worth noting that while Heka defaults to expecting to find certain resources in the base_dir and/or the share_dir
folders, it is nearly always possible to override the location of a particular resource on a case by case basis in the plugin
configuration. For instance, the filename option in a SandboxFilter specifies the filesystem path to the Lua source code
for that filter. If it is specified as a relative path, the path will be computed relative to the share_dir. If it is specified as
an absolute path, the absolute path will be honored.

For our example, we’re going to keep the defaults for most global options, but we’ll bump the maxprocs setting from
1 to 2 so we can get at least some parallel behavior:

[hekad]
maxprocs = 2

2.2.3 Accepting Statsd Data

Once we’ve got Heka’s global settings configured, we’re ready to start on the plugins. The first thing we’ll tackle is
getting Heka set up to accept data from statsd clients. This involves two different plugins, a Statsd Input that accepts
network connections and parses the received stats data, and a Star Accumulator Input that will accept the data gathered
by the StatsdInput, perform the necessary aggregation, and periodically generate ‘statmetric’ messages containing the
aggregated data.

The configuration for these plugins is quite simple:

[StatsdInput]

[StatAccumInput]
ticker_interval = 1
emit_in_fields = true

These two TOML sections tell Heka that it should include a StatsdInput and a StatAccumlInput. The StatsdInput uses
the default value for every configuration setting, while the StatAccumInput overrides the defaults for two of its settings.
The ticker_interval = I setting means that the statmetric messages will be generated once every second instead of the
default of once every five seconds, while the emir_in_fields = true setting means that the aggregated stats data will
be embedded in the dynamic fields of the generated statmetric messages, in addition to the default of embedding the
graphite text format in the message payload.

This probably seems pretty straightforward, but there are actually some subtleties hidden in there that are important
to point out. First, it’s not immediately obvious, but there is an explicit connection between the two plugins. The
StatsdInput has a stat_accum_name setting, which we didn’t need to set because it defaults to ‘StatAccumlInput’. The
following configuration is exactly equivalent:

[StatsdInput]
stat_accum_name = "StatAccumInput"

[StatAccumInput]

10 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

ticker_interval = 1
emit_in_fields = true

The next subtlety to note is that we’ve used a common piece of Heka config shorthand by embedding both the name
and the type in the TOML section header. Heka lets you do this as a convenience if you don’t need to use a name that
is separate from the type. This doesn’t have to be the case, it’s possible to give a plugin a different name, expressing
the type inside the TOML section instead of in its header:

[statsd_input]
type = "StatsdInput"
stat_accum_name = "stat_accumulator"

[stat_accumulator]

type = "StatAccumInput"
ticker_interval = 1
emit_in_fields = true

The config above is ever so slightly different from the original two, because our plugins now have different name
identifiers, but functionally the behavior is identical to the prior versions. Being able to separate a plugin name from
its type is important in cases where you want more than one instance of the same plugin type. For instance, you’d use
the following configuration if you wanted to have a second StatsdInput listening on port 8126 in addition to the default
on port 8125:

[statsd_input_8125]
type = "StatsdInput"
stat_accum_name = "stat_accumulator"

[statsd_input_8126]

type = "StatsdInput"

stat_accum_name = "stat_accumulator"
address = "127.0.0.1:8126"

[stat_accumulator]

type = "StatAccumInput"
ticker_interval = 1
emit_in_fields = true

We don’t need two StatsdInputs for our example, however, so for simplicity we’ll go with the most concise configura-
tion.

2.2.4 Forwarding Aggregated Stats Data

Collecting stats alone doesn’t actually provide much value, we want to be able to actually see the data that has been
gathered. Statsd servers are typically used to aggregate incoming statistics and then periodically deliver the totals to
an upstream time series database, usually Graphite, although InfluxDB is rapidly growing in popularity. For Heka to
replace a standalone statsd server it needs to be able to do the same.

To understand how this will work, we need to step back a bit to look at how Heka handles message routing. First, data
enters the Heka pipeline through an input plugin. Then it needs to be converted from its original raw format into a
message object that Heka knows how to work with. Usually this is done with a decoder plugin, although in the statsd
example above instead the StatAccumlInput itself is periodically generating statmetric messages.

After the data has been marshaled into one (or more) message(s), the message is handed to Heka’s internal message
router. The message router will then iterate through all of the registered filter and output plugins to see which ones
would like to process the message. Each filter and output provides a message matcher to specify which messages it
would like to receive. The router hands each message to each message matcher, and if there’s a match then the matcher
in turn hands the message to the plugin.

2.2. Getting Started 11

http://graphite.readthedocs.org/en/latest/index.html
http://influxdb.com/

Heka Documentation, Release 0.10.0b2

To return to our example, we’ll start by setting up a Carbon Output plugin that knows how to deliver messages to an
upstream Graphite Carbon server. We’ll configure it to receive the statmetric messages generated by the StatAccumIn-
put:

[CarbonOutput]

message_matcher = "Type == 'heka.statmetric'"
address = "mycarbonserver.example.com:2003"
protocol = "udp"

Any messages that pass through the router with a Type field equal to heka.statmetric (which is what the StatAccu-
mOutput emits by default) will be handed to this output, which will in turn deliver it over UDP to the specified carbon
server address. This is simple, but it’s a fundamental concept. Nearly all communication within Heka happens using
Heka message objects being passed through the message router and being matched against the registered matchers.

Okay, so that gets us talking to Graphite. What about InfluxDB? InfluxDB has an extension that allows it to support
the graphite format, so we could use that and just set up a second CarbonOutput:

[carbon]

type = "CarbonOutput"

message_matcher = "Type == 'heka.statmetric'"
address = "mycarbonserver.example.com:2003"
protocol = "udp"

[influx]

type = "CarbonOutput"

message_matcher = "Type == 'heka.statmetric'"
address = "myinfluxserver.example.com:2003"
protocol = "udp"

A couple of things to note here. First, don’t get confused by the type = “CarbonOutput”, which is specifying the
type of the plugin we are configuring, and the “Type” in message_matcher = “Type == ‘heka.statmetric”’, which is
referring to the Type field of the messages that are passing through the Heka router. They’re both called “type”, but
other than that they are unrelated.

Second, you’ll see that it’s fine to have more than one output (and/or filter, for that matter) plugin with identical
message_matcher settings. The router doesn’t care, it will happily give the same message to both of them, and any
others that happen to match.

This will work, but it’d be nice to just use the InfluxDB native HTTP API. For this, we can instead use our handy
HttpOutput:

[CarbonOutput]

message_matcher = "Type == 'heka.statmetric'"
address = "mycarbonserver.example.com:2003"
protocol = "udp"

[statmetric_influx_encoder]

type = "SandboxEncoder"

filename = "lua_encoders/statmetric_influx.lua"

[influx]

type = "HttpOutput"

message_matcher = "Type == 'heka.statmetric'"

address = "http://myinfluxserver.example.com:8086/db/stats/series"
encoder = "statmetric_influx_encoder"

username = "influx_username"

password = "influx_password"

The HttpOutput configuration above will also capture statmetric messages, and will then deliver the data over HTTP
to the specified address where InfluxDB is listening. But wait! what’s all that statmetric-influx-encoder stuff? I'm

12 Chapter 2. hekad Command Line Options

http://graphite.readthedocs.org/en/latest/carbon-daemons.html

Heka Documentation, Release 0.10.0b2

glad you asked...

2.2.5 Encoder Plugins

We’ve already briefly mentioned how, on the way in, raw data needs to be converted into a standard message format
that Heka’s router, filters, and outputs are able to process. Similarly, on the way out, data must be extracted from the
standard message format and serialized into whatever format is required by the destination. This is typically achieved
through the use of encoder plugins, which take Heka messages as input and generate as output raw bytes that an output
plugin can send over the wire. The CarbonOutput doesn’t specify an encoder because it assumes that the Graphite data
will be in the message payload, where the StatAccumlInput puts it, but most outputs need an encoder to be specified so
they know how to generate their data stream from the messages that are received.

In the InfluxDB example above, you can see that we’ve defined a statmetric_influx_encoder, of type SandboxEncoder.
A “Sandbox” plugin is one where the core logic of the plugin is implemented in Lua and is run in a protected sandbox.
Heka has support for Sandbox Decoder, Sandbox Filter, and Sandbox Encoder plugins. In this instance, we’re using a
SandboxEncoder implementation provided by Heka that knows how to extract data from the fields of a heka.statmetric
message and use that data to generate JSON in a format that will be understood by InfluxDB (see StatMetric InfluxDB
Encoder).

This separation of concerns between encoder and output plugins allows for a great deal of flexibility. It’s easy to write
your own SandboxEncoder plugins to generate any format needed, allowing the same HttpOutput implementation can
be used for multiple HTTP-based back ends, rather than needing a separate output plugin for each service. Also, the
same encoder can be used with different outputs. If, for instance, we wanted to write the InfluxDB formatted data to a
file system file for later processing, we could use the statmetric_influx encoder with a FileOutput to do so.

2.2.6 Real Time Stats Graph

While both Graphite and InfluxDB provide mechanisms for displaying graphs of the stats data they receive, Heka is
also able to provide graphs of this data directly. These graphs will be updated in real time, as the data is flowing
through Heka, without the latency of the data store driven graphs. The following config snippet shows how this is
done:

[stat_graph]

type = "SandboxFilter"

filename = "lua_filters/stat_graph.lua"
ticker_interval =1

preserve_data = true

message_matcher = "Type == 'heka.statmetric'"

[stat_graph.config]

num_rows = 300
secs_per_row = 1
stats = "stats.counters.000000.count stats.counters.000001.count stats.counters
stat_labels = "counter_0 counter_1 counter_2"
preservation_version = 0
[DashboardOutput]
ticker_interval =1

There’s a lot going on in just a short bit of configuration here, so let’s consider it one piece at a time to understand
what’s happening. First, we’ve got a star_graph config section, which is telling Heka to start up a SandboxFilter plugin,
a filter plugin with the processing code implemented in Lua. The filename option points to a filter implementation that
ships with Heka. This filter implementation knows how to extract data from statmetric messages and store that data in
a circular buffer data structure. The preserve_data option tells Heka that the all global data in this filter (the circular
buffer data, in this case) should be flushed out to disk if Heka is shut down, so it can be reloaded again when Heka is

2.2. Getting Started 13

000002.count'

Heka Documentation, Release 0.10.0b2

restarted. And the ticker_interval option is specifying that our filter will be emitting an output message containing the
cbuf data back into the router once every second. This message can then be consumed by other filters and/or outputs,
such as our DashboardOutput which will use it to generate graphs (see next section).

After that we have a stat_graph.config section. This isn’t specifying a new plugin, this is nested configuration, a
subsection of the outer stat_graph section. (Note that the section nesting is specified by the use of the star_graph.
prefix in the section name; the indentation helps readability, but has no impact on the semantics of the configuration.)
The stat-graph section configures the SandboxFilter and tells it what Lua source code to use, the stat_graph.config
section is passed in to the Lua source code for further customization of the filter’s behavior.

So what is contained in this nested configuration? The first two options, num_rows and secs_per_row, are configuring
the circular buffer data structure that the filter will use to store the stats data. It can be helpful to think of circular
buffer data structures as a spreadsheet. Our spreadsheet will have 300 rows, and each row will represent one second
of accumulated data, so at any given time we will be holding five minutes worth of stats data in our filter. The next
two options, stats and stat_labels, tell Heka which statistics we want to graph and provide shorter labels for use in the
graph legend. Finally the preservation_version section allows us to version our data structures. This is needed because
our data structures might change. If you let this filter run for a while, gathering data, and then shut down Heka, the 300
rows of circular buffer data will be written to disk. If you then change the num_rows setting and try to restart Heka the
filter will fail to start, because the 300 row size of the preserved data won’t match the new size that you’ve specified.
In this case you would increment the preservation_version value from 0 to 1, which will tell Heka that the preserved
data is no longer valid and the data structures should be created anew.

2.2.7 Heka Dashboard

At this point it’s useful to notice that, while the SandboxFilter gathers the data that we’re interested in and packages it
up an a format that’s useful for graphing, it doesn’t actually do any graphing. Instead, it periodically creates a message
of type heka.sandbox-output, containing the current circular buffer data, and injects that message back into Heka’s
message router. This is where the Dashboard Output that we’ve configured comes in.

Heka’s DashboardOutput is configured by default to listen for heka.sandbox-output messages (along with a few other
message types, which we’ll ignore for now). When it receives a sandbox output message, it will examine the contents
of the message, and if the message contains circular buffer data it will automatically generate a real time graph of that
data.

By default, the dashboard Ul is available by pointing a web browser at port 4352 of the machine where Heka is
running. The first page you’ll see is the Health report, which provides an overview of the plugins that are configured,
along with some information about how messages are flowing through the Heka pipeline:

14 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

Heka Dashboard - Nightly

_;) Heka Dashboard x +*

3 (€] @locahostasszx ~ | [B~ coogle aj&dm ¥ A e s 9

[mozilla v Most Visited v personal * [python v

HEKA Health sandboxes Termination Report

Health

Router Router inputRecycleChan injectRecycleChan

5,232 0/50 100/100 100/100

MESSAGES PROCESSED MESSAGES IN CHANNEL MESSAGES AVAILABLE MESSAGES AVAILABLE

Inputs

Name

#) StatAccuminput
+) tcp

) tcp-control

*) nginx-access-logs

*) Statsdinput

Decoders

.. and scrolling further down the page ...

2.2. Getting Started 15

Heka Documentation, Release 0.10.0b2

Heka Dashboard - Nightly

_;) Heka Dashboard x

~ Cf‘ |' Google

At + A Q-8 A 9

¥ (€) 9 | @ localhost:4352/#

Eimozilla v [5] Most Visited v [Eipersonal * |&python ¥

HEKA Health sandboxes Termination Report

In Channel
stat_graph
sbx-mgr

Y counterFilter

Outputs

Name In Channel
C carbonOutput

& LogOutput

G Dashboardoutput

C* ElasticSearchOutput

Encoders

Name Process Failures

2 LogOutput-PayloadEncoder

Match Channel

Match Channel

Process Duration

Match Duration Processed
154 ns

0ns

Match Duration Processed
158 ns
145 ns

257 ns

220 ns

Processed

In the page header is a Sandboxes link, which will take you to a listing of all of the running SandboxFilter plugins,
along with a list of the outputs they emit. Clicking on this we can see our stat_graph filter and the Stats circular buffer
(“CBUF”) output:

16 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

" 'Heka Dashboard - Nig-htly

_;) Heka Dashboard x +*

x € -)| @ localhost:4352/#sandboxes

~ | [B~ coogle At + A Q-8 A 9

Eimozilla v [5] Most Visited v [Eipersonal * |&python ¥

HEKA Health sandboxes Termination Report

Sandboxes

Name
Y stat_graph

Stats

If you click on the filter name stat_graph, you’ll see a page showing detailed information about the performance of
that plugin, including how many messages have been processed, the average amount of time a message matcher takes
to match a message, the average amount of time spent processing a message, and more:

2.2. Getting Started

17

Heka Documentation, Release 0.10.0b2

Heka Dashboard - Nightly

_;) Heka Dashboard x +*

x [€) ')| @ localhost:4352/#pluginsffilters/stat_graph v C" |' Google 0.| T B ¥+ @ r® b 0

[mozilla v Most Visited v [Eipersonal * |&python ¥

HEKA Health sandboxes Termination Report

Y stat_graph

Properties Plug—in OUtpUtS
Name Name
InChanCapacity Stats
InChanLength
InjectMessage Count
LeakCount

MatchAvgDuration

MatchChanCapacity 50
MatchChanlength 0
MaxInstructions 256
MaxMemory 67,755B
MaxOutput 5,647 B

Memory 67,724 B

Finally, clicking on the Stats link will take us to the actual rendered output, a line graph that updates in real time,
showing the values of the specific counter stats that we have specified in our stat_graph SandboxFilter configuration:

18 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

" 'Heka Dashboard - Nig-htly

| . Heka Dashboard x +*

x € localhost:4352/#sandboxes/stat_graph/outputs/stat_graph.Stats.cbuf b (:‘ |' Google 0\| T B ¥+ @ @ b 9

Eimozilla v [5] Most Visited v [Eipersonal * |&python ¥

HEKA Health sandboxes Termination Report

Y stat_grap

Stats 1 second aggregation for the last 5 tes GEmbed X Raw

[Log scale

2014/08/26 11:11:15: counter_0 (count): 20443 counter_1 (count): 19774 counter_2 (count): 20525

B counter_o(count) B counter_1 (count) B counter_2 (count)

Other stats can be added to this graph by adjusting the stats and stat_labels values for our existing stat_graph filter
config, although if we do so we’ll have to bump the preservation_version to tell Heka that the previous data structures
are no longer valid. You can create multiple graphs by including additional SandboxFilter sections using the same
stat_graph.lua source code.

It also should be mentioned that, while the stat_graph.lua filter we’ve been using only emits a single output graph,
it is certainly possible for a single filter to generate multiple graphs. It’s also possible for SandboxFilters to emit
other types of output, such as raw JSON data, which the DashboardOutput will happily serve as raw text. This can
be very useful for generating ad-hoc API endpoints based on the data that Heka is processing. Dig in to our Sandbox
documentation to learn more about writing your own Lua filters using our Sandbox API.

2.2.8 Loading and Parsing Nginx Log Files

For our next trick, we’ll be loading an Nginx HTTP server’s access log files and extracting information about each
HTTP request logged therein, storing it in a more structured manner in the fields of a Heka message. The first step
is telling Heka where it can find the Nginx access log file. Except that the Nginx log typically isn’t just a single file,
it’s a series of files subject to site specific rotation schemes. On the author’s Ubuntu-ish system, for instance, the
/var/log/nginx directory looks like this, at the time of writing:

access.log

access.log.l

access.log.2.gz
access.log.3.gz
access.log.4.9z
access.log.5.gz
access.log.6.gz

2.2. Getting Started 19

Heka Documentation, Release 0.10.0b2

access.log.7.gz
access.log.8.gz
access.log.9.gz
error.log

This is a common rotation scheme, but there are many others out there. And in cases where many domains are being
hosted, there might be several sets of log files, one for each domain, each distinguished from the others by file and/or
folder name. Luckily Heka’s Logstreamer Input provides a mechanism for handling all of these cases and more. The
LogstreamerInput already has extensive documentation, so we won’t go into exhaustive detail here, instead we’ll show
an example config that correctly handles the above case:

[nginx_access_logs]

type = "LogstreamerInput"

splitter = "TokenSplitter"

decoder = "nginx_access_decoder"

log_directory = "/var/log/nginx"

file_match = 'access\.log\.? (?P<Index>\d+)?(.gz)?"'
priority = [""Index"]

The splitter option above tells Heka that each record will be delimited by a one character token, in this case the default
token 1. If our records were delimited by a different character we could add a Token Splitter section specifying an
alternate. If a single character isn’t sufficient for finding our record boundaries, such as in cases where a record spans
multiple lines, we can use a Regex Splitter to provide a regular expression that describes the record boundary. The
log_directory option tells where the files we’re interested in live. The file_match is a regular expression that matches all
of the files comprising the log stream. In this case, they all must start with access.log, after which they can (optionally)
be followed by a dot (.), then (optionally, again) one or two digits, then (optionally, one more time) a gzip extension
(-g2). Any digits that are found are captured as the Index match group, and the priority option specifies that we use this
Index value to determine the order of the files. The leading carat character (*) reverses the order of the priority, since
in our case lower digits mean newer files.

The LogstreamerInput will use this configuration data to find all of the relevant files, then it will start working its way
through the entire stream of files from oldest to newest, tracking its progress along the way. If Heka is stopped and
restarted, it will pick up where it left off, even if that file was rotated during the time that Heka was down. When it
gets to the end of the newest file, it will follow along, loading new lines as they’re added, and noticing when the file is
rotated so it can hop forward to start loading the newer one.

Which then brings us to the decoder option. This tells Heka which decoder plugin the LogstreamerInput will be using
to parse the loaded log files. The nginx_access_decoder configuration is as follows:

[nginx_access_decoder]
type = "SandboxDecoder"
filename = "lua_decoders/nginx_access.lua"

[nginx_access_decoder.config]
log_format = 'Sremote_addr - S$Sremote_user [$time_local] "Srequest" S$status S$body
type = "nginx.access"

;_bytes_sent

Some of this should be looking familiar by now. This is a SandboxDecoder, which means that it is a decoder plugin
with the actual parsing logic implemented in Lua. The outer config section configures the SandboxDecoder itself,
while the nested section provides additional config information that is passed in to the Lua code.

While it’s certainly possible to write your own custom Lua parsing code, in this case we are again using a plugin
provided by Heka, specifically designed for parsing Nginx access logs. But Nginx doesn’t have a single access log
format, the exact output is dynamically specified by a log_format directive in the Nginx configuration. Luckily Heka’s
decoder is quite sophisticated; all you have to do to parse your access log output is copy the appropriate log_format
directive out of the Nginx configuration file and paste it into the log_format option in your Heka decoder config, as
above, and Heka will use the magic of LPEG to dynamically create a grammar that will extract the data from the log

20 Chapter 2. hekad Command Line Options

http://www.inf.puc-rio.br/~roberto/lpeg/

Heka Documentation, Release 0.10.0b2

lines and store them in Heka message fields. Finally the rype option above lets you specify what the Type field should
be set to on the messages generated by this decoder.

2.2.9 Sending Nginx Data to ElasticSearch

One common use case people are interested in is taking the data extracted from their HTTP server logs and sending it
on to ElasticSearch, often so they can peruse that data using dashboards generated by the excellent dashboard creation
tool Kibana. We’ve handled loading and parsing the information with our input and decoder configuration above, now
let’s look at the other side with the following output and encoder settings:

[ESJsonEncoder]
es_index_from_timestamp = true
type_name = "%{Type}"

[ElasticSearchOutput]

server = "elasticsearch.example.com:9200"
message_matcher = "Type == 'nginx.access'"
encoder = "ESJsonEncoder"

flush_interval = 50

Working backwards, we’ll first look at the ElasticSearch Output configuration. The server setting indicates where
ElasticSearch is listening. The message_matcher tells us we’ll be catching messages with a Type value of nginx.access,
which you’ll recall was set in the decoder configuration we discussed above. The flush_interval setting specifies that
we’ll be batching our records in the output and flushing them out to ElasticSearch every 50 milliseconds.

Which leaves us with the encoder setting, and the corresponding ElasticSearch JSON Encoder section. The Elastic-
SearchOutput uses ElasticSearch’s Bulk API to tell ElasticSearch how the documents should be indexed, which means
that each document insert consists of a small JSON object satisfying the Bulk API followed by another JSON object
containing the document itself. At the time of writing, Heka provides three encoders that will extract data from a Heka
message and generate an appropriate Bulk API header, the ElasticSearch JSON Encoder we use above, which gener-
ates a clean document schema based on the schema of the message that is being encoded; the ElasticSearch Logstash
VO Encoder, which uses the “v0” schema format defined by Logstash (specifically intended for HTTP request data,
natively supported by Kibana), and the ElasticSearch Payload Encoder, which assumes that the message payload will
already contain a fully formed JSON document ready for sending to ElasticSearch, and just prepends the necessary
Bulk API segement.

In our ESJsonEncoder section, we’re mostly adhering to the default settings. By default, this decoder inserts docu-
ments into an ElasticSearch index based on the current date: heka-YYYY.MM.DD (spelled as heka-%{2006.01.02} in
the config). The es_index_from_timestamp = true option tells Heka to use the timestamp from the message when de-
termining the date to use for the index name, as opposed to the default behavior which uses the system clock’s current
time as the basis. The type option tells Heka what ElasticSearch record type should be used for each record. This
option supports interpolation of various values from the message object; in the example above the message’s Type
field will be used as the ElasticSearch record type name.

2.2.10 Generating HTTP Status Code Graphs

ElasticSearch and Kibana provide a number of nice tools for graphing and querying the HTTP request data that is
being parsed from our Nginx logs but, as with the stats data above, it would be nice to get real time graphs of some of
this data directly from Heka. As you might guess, Heka already provides plugins specifically for this purpose:

[http_status]

type = "SandboxFilter"

filename = "lua_filters/http_status.lua"
ticker_interval = 1

preserve_data = true

2.2. Getting Started 21

http://www.elasticsearch.org/
http://www.elasticsearch.org/overview/kibana/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html
http://logstash.net/

Heka Documentation, Release 0.10.0b2

message_matcher = "Type == 'nginx.access'"

[http_status.config]

sec_per_row = 1
rows = 1800
perservation_version = 0

As mentioned earlier, graphing in Heka is accomplished through the cooperation of a filter which emits messages
containing circular buffer data, and the DashboardOutput which consumes those messages and displays the data on
a graph. We already configured a DashboardOutput earlier, so now we just need to add a filter that catches the
nginx.access messages and aggregates the data into a circular buffer.

Heka has a standard message format that it uses for data that represents a single HTTP request, used by the Nginx
access log decoder that is parsing our log files. In this format, the status code of the HTTP response is stored in
a dynamic message field called, simply, status. The above filter will create a circular buffer data structure to store
these response status codes in 6 columns: 100s, 200s, 300s, 400s, 500s, and unknown. Similar to before, the nested
configuration tells the filter how many rows of data to keep in the circular buffer and how many seconds of data each
row should represent. It also gives us a preservation_version so we can flag when the data structures have changed.

Once we add this section to our configuration and restart hekad, we should be able to browse to the dashboard UI and
be able to find a graph of the various response status categories that are extracted from our HTTP server logs.

2.2.11 Anomaly Detection

We’re getting close to the end of our journey. All of the data that we want to gather is now flowing through Heka,
being delivered to external data stores for off line processing and analytics, and being displayed in real time graphs by
Heka’s dashboard. The only remaining behavior we’re going to activate is anomaly detection, and the generation of
notifiers based on anomalous events being detected. We’ll start by looking at the anomaly detection piece.

We’ve already discussed how Heka uses a circular buffer library to track time series data and generate graphs in the
dashboard. Well it turns out that the anomaly detection features that Heka provides make use of the same circular
buffer library.

Under the hood, how it works is that you provide an “anomaly config”, which is a string that looks something like a
programming function call. The anomaly config specifies which anomaly detection algorithm should be used. Algo-
rithms currently supported by Heka are a standard deviation rate of change test, and both parametric (i.e. Gaussian)
and non-parametric Mann-Whitney-Wilcoxon tests. Included in the anomaly config is information about which col-
umn in a circular buffer data structure we want to monitor for anomalous behavior. Later, the parsed anomaly config
is passed in to the detection module’s detect function, along with a populated circular buffer data structure, and the
circular buffer data will be analyzed using the specified algorithm.

Luckily, for our use cases, you don’t have to worry too much about all of the details of using the anomaly detection
library, because the SandboxFilters we’ve been using have already taken care of the hard parts. All we need to do is
create an anomaly config string and add that to our config sections. For instance, here’s an example of how we might
monitor our HTTP response status codes:

[http_status]

type = "SandboxFilter"

filename = "lua_filters/http_status.lua"
ticker_interval =1

preserve_data = true

message_matcher = "Type == 'nginx.access'"

[http_status.config]
sec_per_row = 1
rows = 1800

22 Chapter 2. hekad Command Line Options

https://github.com/mozilla-services/lua_sandbox/blob/dev/docs/circular_buffer.md
http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test

Heka Documentation, Release 0.10.0b2

perservation_version = 0
anomaly_config = 'roc ("HTTP Status", 2, 15, 0, 1.5, true, false) mww_nonparametx

tic ("HTTP Staf

Everything is the same as our earlier configuration, except we’ve added an anomaly_config setting. There’s a lot in
there, so we’ll examine it a piece at a time. The first thing to notice is that there are actually two anomaly configs
specified. You can add as many as you’d like. They’re space delimited here for readability, but that’s not strictly
necessary, the parentheses surrounding the config parameters are enough for Heka to identify them. Next we’ll dive
into the configurations, each in turn.

The first anomaly configuration by itself looks like this:

roc ("HTTP Status", 2, 15, 0, 1.5, true, false)

The roc portion tells us that this config is using the rate of change algorithm. Each algorithm has its own set of
parameters, so the values inside the parentheses are those that are required for a rate of change calculation. The first
argument is payload_name, which needs to correspond to the payload_name value used when the message is injected
back into Heka’s message router, which is “HTTP Status” in the case of this filter.

The next argument is the circular buffer column that we should be watching. We’re specifying column 2 here, which a
quick peek at the http_status.lua source code will show you is the column where we’re tracking 200 status codes. The
next value specifies how many intervals (i.e. circular buffer rows) should we use in our analysis window. We’ve said
15, which means that we’ll be examining the rate of change between the values in two 15 second intervals. Specifically,
we’ll be comparing the data in rows 2 through 16 to the data in rows 17 through 31 (we always throw out the current
row because it might not yet be complete).

After that we specify the number of intervals to use in our historical analysis window. Our setting of 0 means we’re
using the entire history, rows 32 through 1800. This is followed by the standard deviation threshold parameter, which
we’ve set to 1.5. So, put together, we’re saying if the rate of change of the number of 200 status responses over the last
two 15 second intervals is more than 1.5 standard deviations off from the rate of change over the 29 minutes before
that, then an anomaly alert should be triggered.

The last two parameters here are boolean values. The first of these is whether or not an alert should be fired in the
event that we stop receiving input data (we’re saying yes), the second whether or not an alert should be fired if we start
receiving data again after a gap (we’re saying no).

That’s the first one, now let’s look at the second:

mww_nonparametric ("HTTP Status", 5, 15, 10, 0.8) ‘

The mww_nonparametric tells us, as you might guess, that this config will be using the Mann-Whitney-Wilcoxon
non-parametric algorithm for these computations. This algorithm can be used to identify similarities (or differences)
between multiple data sets, even when those data sets have a non- Gaussian distribution, such as cases where the set
of data points is sparse.

The next argument tells us what column we’ll be looking at. In this case we’re using column 5, which is where we
store the 500 range status responses, or server errors. After that is the number of intervals to use in a analysis window
(15), followed by the number of analysis windows to compare (10). In this case, that means we’ll be examining the
last 15 seconds, and comparing what we find there with the 10 prior 15 second windows, or the 150 previous seconds.

The final argument is called pstat, which is a floating point value between 0 and 1. This tells us what type of data
changes we’re going to be looking for. Anything over a 0.5 means we’re looking for an increasing trend, anything
below 0.5 means we’re looking for a decreasing trend. We’ve set this to 0.8, which is clearly in the increasing trend
range.

So, taken together, this anomaly config means that we’re going to be watching the last 15 seconds to see whether there
is an anomalous spike in server errors, compared to the 10 intervals immediately prior. If we do detect a sizable spike
in server errors, we consider it an anomaly and an alert will be generated.

In this example, we’ve only specified anomaly detection on our HTTP response status monitoring, but the
anomaly_config option is also available to the stat graph filter, so we could apply similar monitoring to any of the

2.2. Getting Started 23

https://github.com/mozilla-services/heka/blob/dev/sandbox/lua/filters/http_status.lua#L60

Heka Documentation, Release 0.10.0b2

statsd data that is contained in our statmetric messages.

2.2.12 Notifications

But what do we mean, exactly, when we say that detecting an anomaly will generate an alert? As with nearly everything
else in Heka, what we’re really saying is that a message will be injected into the message router, which other filter and
output plugins are then able to listen for and use as a trigger for action.

We won’t go into detail here, but along with the anomaly detection module Heka’s Lua environment provides an alert
module that generates alert messages (with throttling, to make sure hundreds of alerts in rapid succession don’t actually
generate hundreds of separate notifications) and an annotation module that causes the dashboard to apply annotations
to the graphs based on our circular buffer data. Both the http status and stat graph filters make use of both of these, so
if you specify anomaly configs for either of those filters, output graphs will be annotated and alert messages will be
generated when anomalies are detected.

Alert messages aren’t of much use if they’re just flowing through Heka’s message router and nothing is listening for
them, however. So let’s set up an SmtpOutput that will listen for the alert messages, sending emails when they come
through:

[alert_smtp_encoder]

type = "SandboxEncoder"

filename = "lua_encoders/alert.lua"
[SmtpOutput]

message_matcher = "Type == 'heka.sandbox-output' && Fields|[payload_type] == 'alert'"
encoder = "alert_smtp_encoder"

send_from = "hekalexample.com"

send_to = ["alert_recipient@example.com"]
auth = "Plain"

user = "smtpuser"

password = "smtpassword"

host = "127.0.0.1:25"

First we specify an encoder, using a very simple encoder implementation provided by Heka which extracts the times-
tamp, hostname, logger, and payload from the message and emits those values in a text format. Then we add the
output itself, listening for any alert messages that are emitted by any of our SandboxFilter plugins, using the encoder
to format the message body, and sending an outgoing mail message through the SMTP server as specified by the other
configuration options.

And that’s it! We’re now generating email notifiers from our anomaly detection alerts.

2.2.13 Tying It All Together

Here’s what our full config looks like if we put it all together into a single file:

[hekad]
maxprocs = 2

[StatsdInput]

[StatAccumInput]
ticker_interval =1
emit_in_fields = true

[CarbonOutput]
message_matcher = "Type == 'heka.statmetric'"
address = "mycarbonserver.example.com:2003"

24 Chapter 2. hekad Command Line Options

https://github.com/mozilla-services/heka/blob/dev/sandbox/lua/encoders/alert.lua

Heka Documentation, Release 0.10.0b2

protocol = "udp"

[statmetric—-influx—-encoder]
type = "SandboxEncoder"
filename = "lua_encoders/statmetric_influx.lua"

[influx]

type = "HttpOutput"

message_matcher = "Type == 'heka.statmetric'"

address "http://myinfluxserver.example.com:8086/db/stats/series"
encoder = "statmetric-influx-encoder"

username = "influx_username"

password = "influx_password"

[stat_graph]

type = "SandboxFilter"

filename = "lua_filters/stat_graph.lua"
ticker_interval = 1

preserve_data = true

message_matcher = "Type == 'heka.statmetric'"

[stat_graph.config]

num_rows = 300
secs_per_row = 1
stats = "stats.counters.000000.count stats.counters.000001.count stats.counters{000002.count’
stat_labels = "counter_0 counter_1 counter_2"
preservation_version = 0
[DashboardOutput]
ticker_interval =1

[nginx_access_logs]

type = "LogstreamerInput"

splitter = "TokenSplitter"

decoder = "nginx_access_decoder"

log_directory = "/var/log/nginx"

file_match = 'access\.log\.? (?P<Index>\d+)?(.gz)?"'
priority = [""Index"]

[nginx_access_decoder]

type = "SandboxDecoder"

script_type = "lua"

filename = "lua_decoders/nginx_access.lua"

[nginx_access_decoder.config]
log_format = 'S$remote_addr - S$Sremote_user [$time_local] "S$Srequest" $status $body_bytes_sent
type = "nginx.access"

[ESJsonEncoder]
es_index_from_timestamp = true
type_name = "${Type}"

[ElasticSearchOutput]

message_matcher = "Type == 'nginx.access'"
encoder = "ESJsonEncoder"

flush_interval = 50

[http_status]

2.2. Getting Started 25

Heka Documentation, Release 0.10.0b2

type = "SandboxFilter"

filename = "lua_filters/http_status.lua"
ticker_interval =1

preserve_data = true

message_matcher = "Type == 'nginx.access'"

[http_status.config]

sec_per_row = 1

rows = 1440

perservation_version = 0

anomaly_config = 'roc ("HTTP Status", 2, 15, 0, 1.5, true, false) mww_nonparamety

[alert_smtp_encoder]

type = "SandboxEncoder"

filename = "lua_encoders/alert.lua"
[SmtpOutput]

message_matcher = "Type == 'heka.sandbox-output' && Fields|[payload_type] == 'alert'"
encoder = "alert_smtp_encoder"

send_from = "hekal@example.com"

send_to = ["alert_recipient@example.comn"]
auth = "Plain"

user = "smtpuser"

password = "smtpassword"

host = "127.0.0.1:25"

tic ("HTTP Staf

This isn’t too terribly long, but even so it might be nice to break it up into smaller pieces. Heka supports the use of a
directory instead of a single file for configuration; if you specify a directory all files ending with .foml will be merged
together and loaded as a single configuration, which is preferable for more complex deployments.

This example is not in any way meant to be an exhaustive list of Heka’s features. Indeed, we’ve only just barely
scratched the surface. Hopefully, though, it gives those of you who are new to Heka enough context to understand
how the pieces fit together, and it can be used as a starting point for developing configurations that will meet your own
needs. If you have questions or need assistance getting things going, please make use of the mailing list, or use an IRC
client to come visit in the #heka channel on irc.mozilla.org.

2.3 Configuring hekad

A hekad configuration file specifies what inputs, splitters, decoders, filters, encoders, and outputs will be loaded. The
configuration file is in TOML format. TOML looks very similar to INI configuration formats, but with slightly more
rich data structures and nesting support.

If hekad’s config file is specified to be a directory, all contained files with a filename ending in ”.toml” will be loaded
and merged into a single config. Files that don’t end with ”.tom]” will be ignored. Merging will happen in alphabetical
order, settings specified later in the merge sequence will win conflicts.

The config file is broken into sections, with each section representing a single instance of a plugin. The section name
specifies the name of the plugin, and the “type” parameter specifies the plugin type; this must match one of the types
registered via the pipeline.RegisterPlugin function. For example, the following section describes a plugin named
“tcp:5565”, an instance of Heka’s plugin type “Tcplnput’:

[tcp:5565]

type = "TcpInput"”

splitter = "HekaFramingSplitter"
decoder = "ProtobufDecoder"
address = ":5565"

26 Chapter 2. hekad Command Line Options

https://mail.mozilla.org/listinfo/heka
https://github.com/mojombo/toml

Heka Documentation, Release 0.10.0b2

If you choose a plugin name that also happens to be a plugin type name, then you can omit the “type” parameter from
the section and the specified name will be used as the type. Thus, the following section describes a plugin named
“Tcplnput”, also of type “Tcplnput’:

[TepInput]

address = ":5566"

splitter = "HekaFramingSplitter"
decoder = "ProtobufDecoder"

Note that it’s fine to have more than one instance of the same plugin type, as long as their configurations don’t interfere
with each other.

Any values other than “type” in a section, such as “address” in the above examples, will be passed through to the
plugin for internal configuration (see Plugin Configuration).

If a plugin fails to load during startup, hekad will exit at startup. When hekad is running, if a plugin should fail (due
to connection loss, inability to write a file, etc.) then hekad will either shut down or restart the plugin if the plugin
supports restarting. When a plugin is restarting, hekad will likely stop accepting messages until the plugin resumes
operation (this applies only to filters/output plugins).

Plugins specify that they support restarting by implementing the Restarting interface (see Restarting Plugins). Plugins
supporting Restarting can have their restarting behavior configured.

An internal diagnostic runner runs every 30 seconds to sweep the packs used for messages so that possible bugs in
heka plugins can be reported and pinned down to a likely plugin(s) that failed to properly recycle the pack.

2.3.1 Global configuration options
You can optionally declare a [hekad] section in your configuration file to configure some global options for the heka
daemon.
Config:
* cpuprof (string output_file): Turn on CPU profiling of hekad; output is logged to the output_file.

¢ max_message_loops (uint): The maximum number of times a message can be re-injected into the system. This
is used to prevent infinite message loops from filter to filter; the default is 4.

max_process_inject (uint): The maximum number of messages that a sandbox filter’s ProcessMessage func-
tion can inject in a single call; the default is 1.

max_process_duration (uint64): The maximum number of nanoseconds that a sandbox filter’s ProcessMes-
sage function can consume in a single call before being terminated; the default is 100000.

max_timer_inject (uint): The maximum number of messages that a sandbox filter’s TimerEvent function can
inject in a single call; the default is 10.

max_pack_idle (string): A time duration string (e.x. “2s”, “2m”, “2h”) indicating how long a message pack
can be ‘idle’ before its considered leaked by heka. If too many packs leak from a bug in a filter or output
then heka will eventually halt. This setting indicates when that is considered to have occurred.

maxprocs (int): Enable multi-core usage; the default is 1 core. More cores will generally increase message
throughput. Best performance is usually attained by setting this to 2 x (number of cores). This assumes
each core is hyper-threaded.

memprof (string output_file): Enable memory profiling; output is logged to the output_file.

poolsize (int): Specify the pool size of maximum messages that can exist. Default is 100.

plugin_chansize (int): Specify the buffer size for the input channel for the various Heka plugins. Defaults to
30.

2.3. Configuring hekad 27

Heka Documentation, Release 0.10.0b2

* base_dir (string): Base working directory Heka will use for persistent storage through process and server
restarts. The hekad process must have read and write access to this directory. Defaults to /var/cache/hekad
(or c:\var\cacheVhekad on Windows).

« share_dir (string): Root path of Heka’s “share directory”, where Heka will expect to find certain resources
it needs to consume. The hekad process should have read- only access to this directory. Defaults to
/usr/share/heka (or c:\usP\share\heka on Windows).

New in version 0.6.

« sample_denominator (int): Specifies the denominator of the sample rate Heka will use when computing the
time required to perform certain operations, such as for the ProtobufDecoder to decode a message, or the
router to compare a message against a message matcher. Defaults to 1000, i.e. duration will be calculated
for one message out of 1000.

New in version 0.6.

« pid_file (string): Optionally specify the location of a pidfile where the process id of the running hekad process
will be written. The hekad process must have read and write access to the parent directory (which is not
automatically created). On a successful exit the pidfile will be removed. If the path already exists the
contained pid will be checked for a running process. If one is found, the current process will exit with an
error.

New in version 0.9.

* hostname (string): Specifies the hostname to use whenever Heka is asked to provide the local host’s hostname.
Defaults to whatever is provided by Go’s os.Hostname() call.

* max_message_size (uint32): The maximum size (in bytes) of message can be sent during processing. Defaults
to 64KiB.

New in version 0.10.

* log_flags (int): Control the prefix for STDOUT and STDERR logs. Common values are 3 (date and time,
the default) or O (no prefix). See ‘https://golang.org/pkg/log/#pkg-constants Go documentation‘_ for
details.

* full_buffer_max_retries (int): When Heka shuts down due to a buffer filling to capacity, the next time Heka
starts it will delay startup briefly to give the buffer a chance to drain, to alleviate the back-pressure. This
setting specifies the maximum number of intervals (max s in duration) Heka should wait for the buffer
size to get below 90% of capacity before deciding that the issue is not resolved and continuing startup (or
shutting down).

2.3.2 Example hekad.toml file

[hekad]

maxprocs = 4

Heka dashboard for internal metrics and time series graphs
[Dashboard]

type = "DashboardOutput"

address = ":4352"

ticker_interval = 15

Email alerting for anomaly detection

[Alert]

type = "SmtpOutput"

message_matcher = "Type == 'heka.sandbox-output' && Fields[payload_type] == 'alert'"
send_from = "acme-alert@example.com"

28 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

send_to = ["admin@example.com"]
auth = "Plain"

user = "smtp-user"

password = "smtp-pass"

host = "mail.example.com:25"
encoder = "AlertEncoder"

User friendly formatting of alert messages
[AlertEncoder]

type = "SandboxEncoder"

filename = "lua_encoders/alert.lua"

Nginx access log reader
[AcmeWebserver]

type = "LogstreamerInput"
log_directory = "/var/log/nginx"
file_match = 'access\.log'
decoder = "CombinedNginxDecoder"

Nginx access 'combined' log parser
[CombinedNginxDecoder]

type = "SandboxDecoder"

filename = "lua_decoders/nginx_access.lua"

[CombinedNginxDecoder.config]

user_agent_transform = true

user_agent_conditional = true

type = "combined"

log_format = 'Sremote_addr - S$Sremote_user [S$time_local] "S$Srequest" S$status $body_bytes_sent "Shtt

Collection and visualization of the HTTP status codes
[AcmeHTTPStatus]

type = "SandboxFilter"

filename = "lua_filters/http_status.lua"
ticker_interval = 60

preserve_data = true

message_matcher = "Logger == 'AcmeWebserver'"

rate of change anomaly detection on column 1 (HTTP 200)
[AcmeHTTPStatus.config]
anomaly_config = 'roc ("HTTP Status", 1, 15, 0, 1.5, true, false)'

2.3.3 Using Environment Variables

If you wish to use environmental variables in your config files as a way to configure values, you can sim-
ply use $ENV [VARIABLE_NAME] and the text will be replaced with the value of the environmental variable
VARIABLE_NAME.

Example:

[AMOPInput]

url = "amgp://$ENV[USER] :$ENV [PASSWORD] @rabbitmg/"
exchange = "testout"

exchangeType = "fanout"

2.3. Configuring hekad 29

Heka Documentation, Release 0.10.0b2

2.3.4 Configuring Restarting Behavior

Plugins that support being restarted have a set of options that govern how a restart is handled if they exit with an error.
If preferred, the plugin can be configured to not restart, or it could be restarted only 100 times, or restart attempts
can proceed forever. Once the max_retries have been exceeded the plugin will be unregistered, potentially triggering
hekad to shutdown (depending on the plugin’s can_exit configuration).

Adding the restarting configuration is done by adding a config section to a plugin’s configuration called retries. A
small amount of jitter will be added to the delay between restart attempts.

Config:

* max_jitter (string): The longest jitter duration to add to the delay between restarts. Jitter up to 500ms by
default is added to every delay to ensure more even restart attempts over time.

* max_delay (string): The longest delay between attempts to restart the plugin. Defaults to 30s (30 seconds).

¢ delay (string): The starting delay between restart attempts. This value will be the initial starting delay for the
exponential back-off, and capped to be no larger than the max_delay. Defaults to 250m:s.

* max_retries (int): Maximum amount of times to attempt restarting the plugin before giving up and exiting the
plugin. Use O for no retry attempt, and -1 to continue trying forever (note that this will cause hekad to halt
possibly forever if the plugin cannot be restarted). Defaults to -1.

Example:

[AMQOPOutput]

url = "amgp://guest:guest@rabbitmg/"

exchange = "testout"

exchange_type = "fanout"

message_matcher = 'Logger == "TestWebserver"'

[AMQPOutput . retries]

max_delay = "30s"
delay = "250ms"
max_retries = 5

2.4 Inputs

2.4.1 Common Input Parameters

New in version 0.9.

There are some configuration options that are universally available to all Heka input plugins. These will be consumed
by Heka itself when Heka initializes the plugin and do not need to be handled by the plugin-specific initialization code.

* decoder (string, optional): Decoder to be used by the input. This should refer to the name of a registered
decoder plugin configuration. If supplied, messages will be decoded before being passed on to the router
when the InputRunner’s Deliver method is called.

¢ synchronous_decode (bool, optional): If synchronous_decode is false, then any specified decoder plugin will
be run by a DecoderRunner in its own goroutine and messages will be passed in to the decoder over a
channel, freeing the input to start processing the next chunk of incoming or available data. If true, then any
decoding will happen synchronously and message delivery will not return control to the input until after
decoding has completed. Defaults to false.

30 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

 send_decode_failures (bool, optional): If true, then if an attempt to decode a message fails then decode failure
will cause the original, undecoded message to be tagged with a decode_failure field (set to true) and
delivered to the router for possible further processing. Defaults to false. See also log_decode_failures.

 can_exit (bool, optional): If false, the input plugin exiting will trigger a Heka shutdown. If set to true, Heka
will continue processing other plugins. Defaults to false on most inputs.

* splitter (string, optional) Splitter to be used by the input. This should refer to the name of a registered splitter
plugin configuration. It specifies how the input should split the incoming data stream into individual
records prior to decoding and/or injection to the router. Typically defaults to “NullSplitter”, although
certain inputs override this with a different default value.

New in version 0.10.

* log_decode_failures (bool, optional): If true, then if an attempt to decode a message fails then Heka will log
an error message. Defaults to true. See also send_decode_failures.

2.4.2 Available Input Plugins

AMQP Input

Plugin Name: AMQPInput

Connects to a remote AMQP broker (RabbitMQ) and retrieves messages from the specified queue. As AMQP is
dynamically programmable, the broker topology needs to be specified in the plugin configuration.

Config:

url (string): An AMQP connection string formatted per the RabbitMQ URI Spec.

exchange (string): AMQP exchange name

exchange_type (string): AMQP exchange type (fanout, direct, topic, or headers).

exchange_durability (bool): Whether the exchange should be configured as a durable exchange. Defaults to
non-durable.

exchange_auto_delete (bool): Whether the exchange is deleted when all queues have finished and there is no
publishing. Defaults to auto-delete.

routing_Kkey (string): The message routing key used to bind the queue to the exchange. Defaults to empty
string.

prefetch_count (int): How many messages to fetch at once before message acks are sent. See RabbitMQ
performance measurements for help in tuning this number. Defaults to 2.

queue (string): Name of the queue to consume from, an empty string will have the broker generate a name for
the queue. Defaults to empty string.

queue_durability (bool): Whether the queue is durable or not. Defaults to non-durable.

queue_exclusive (bool): Whether the queue is exclusive (only one consumer allowed) or not. Defaults to non-
exclusive.

queue_auto_delete (bool): Whether the queue is deleted when the last consumer un-subscribes. Defaults to
auto-delete.

queue_ttl (int): Allows ability to specify TTL in milliseconds on Queue declaration for expiring messages.
Defaults to undefined/infinite.

retries (RetryOptions, optional): A sub-section that specifies the settings to be used for restart behavior. See
Configuring Restarting Behavior

2.4. Inputs 31

http://www.rabbitmq.com/uri-spec.html
http://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/
http://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-part-2/

Heka Documentation, Release 0.10.0b2

New in version 0.6.

* tls (TIsConfig): An optional sub-section that specifies the settings to be used for any SSL/TLS encryption. This
will only have any impact if URL uses the AMQPS URI scheme. See Configuring TLS.

New in version 0.9.

* read_only (bool): Whether the AMQP user is read-only. If this is true the exchange, queue and binding must
be declared before starting Heka. Defaults to false.

Since many of these parameters have sane defaults, a minimal configuration to consume serialized messages would
look like:

[AMOPInput]

url = "amgp://guest:guest@rabbitmg/"
exchange = "testout"

exchange_type = "fanout"

Or you might use a PayloadRegexDecoder to parse OSX syslog messages with the following:

[AMOPInput]

url = "amgp://guest:guest@rabbitmg/"
exchange = "testout"

exchange_type = "fanout"

decoder = "logparser"

[logparser]
type = "MultiDecoder"
subs = ["logline", "leftovers"]

[logline]
type = "PayloadRegexDecoder"
MatchRegex = '"\w+ \d+ \d+:\d+:\d+ \S+ (?P<Reporter>[~\[]+)\[(2P<Pid>\d+)] (?P<Sandbox>["

[logline.MessageFields]

Type = "amgplogline"
Hostname = "myhost"
Reporter = "%$Reporter%"
Remaining = "%Remaining%"
Logger = "%$Loggers"
Payload = "$Remaining%"

[leftovers]

type = "PayloadRegexDecoder"

MatchRegex = '.x'

[leftovers.MessageFields]
Type = "drop"
Payload = ""

Docker Event Input

New in version 0.10.0.
Plugin Name: DockerEventInput

The DockerEventInput plugin connects to the Docker daemon and watches the Docker events API, sending all events
to the Heka pipeline. See: Docker Events API Messages will be populated as follows:

e Uuid: Type 4 (random) UUID generated by Heka.

32 Chapter 2. hekad Command Line Options

(?P Rer

https://docs.docker.com/reference/api/docker_remote_api_v1.18/#monitor-dockers-events

Heka Documentation, Release 0.10.0b2

* Timestamp: Time when the event was received by the plugin.

» Type: DockerEvent.

* Hostname: Hostname of the machine on which Heka is running.

* Payload: The event id, status, from and time.

id:47e08ded0abb57ca263136291f14ed7689de8bb6ec519f01ea76958fe512abff9
from:gliderlabs/alpine:3.1 time: 1429555298

* Logger: The id provided in the event

Fields[”ID’] (string): The ID provided in the docker event.

Fields[”Status™] (string): The Status in the docker event.

¢ Fields[”From”] (string): The From in the docker event.

* Fields["Time”] (string): The timestamp in the docker event.

Config:

* endpoint (string): A Docker endpoint. Defaults to “unix:///var/run/docker.sock”.

Example: -
status:create

* cert_path (string, optional): Path to directory containing client certificate and keys. This value works in the
same way as DOCKER_CERT_PATH.

Example:

[DockerEvent Input]
type = "DockerEventInput"

[PayloadEncoder]
append_newlines = false

[LogOutput]

type = "LogOutput"
message_matcher = "Type ==
encoder = "PayloadEncoder"

'DockerEvent'"

Docker Log Input

New in version 0.8.

Plugin Name: DockerLogInput

The DockerLogInput plugin attaches to all containers running on a host and sends their logs messages into the Heka
pipeline. The plugin is based on Logspout by Jeff Lindsay. Messages will be populated as follows:

¢ Uuid: Type 4 (random) UUID generated by Heka.

* Timestamp: Time when the log line was received by the plugin.

* Type: DockerLog.

* Hostname: Hostname of the machine on which Heka is running.

 Payload: The log line received from a Docker container.

» Logger: stdout or stderr, depending on source.

* Fields[”ContainerID”] (string): The container ID.

Fields[’ContainerName”] (string): The container name.

2.4. Inputs

33

https://docs.docker.com/articles/https/#client-modes
https://github.com/progrium/logspout

Heka Documentation, Release 0.10.0b2

Note: Logspout expects to be dealing exclusively with textual log file data, and always assumes that the file data is
newline delimited, i.e. one line in the log file equals one logical unit of data. For this reason, the DockerLogInput

currently does not support the use of alternate splitter plugins. Any splitter setting specified in a DockerLoglInput’s
configuration will be ignored.

Config:
* endpoint (string): A Docker endpoint. Defaults to “unix:///var/run/docker.sock”.

* decoder (string): The name of the decoder used to further transform the message into a structured hekad mes-
sage. No default decoder is specified.

New in version 0.9.

* cert_path (string, optional): Path to directory containing client certificate and keys. This value works in the
same way as DOCKER_CERT_PATH.

New in version 0.10.

* name_from_env_var (string, optional): Overwrite the ContainerName with this environment variable on the
Container if exists. If left empty the container name will still be used.

* fields_from_env (array[string], optional): A list of environment variables to extract from the container and
add as fields.

Example:

[nginx log_decoder]
type = "SandboxDecoder"
filename = "lua_decoders/nginx_access.lua"

[nginx_ log_decoder.config]

type = "nginx.access"

user_agent_transform = true

log_format = 'S$remote_addr - S$Sremote_user [$time_local] "Srequest" S$status S$body_bytes_
[DockerLogInput]

decoder = "nginx_log_decoder"

fields_from_env = ["MESOS_TASK_ID"]

File Polling Input

New in version 0.7.
Plugin Name: FilePollingInput

FilePollingInputs periodically read (unbuffered) the contents of a file specified, and creates a Heka message with the
contents of the file as the payload.

Config:
« file_path(string): The absolute path to the file which the input should read.

* ticker_interval (unit): How often, in seconds to input should read the contents of the file.

Example:

[MemStats]

type = "FilePollingInput"
ticker_interval =1

34 Chapter 2. hekad Command Line Options

ent "Shttp_re

https://docs.docker.com/articles/https/#client-modes

Heka Documentation, Release 0.10.0b2

file_path = "/proc/meminfo"
decoder = "MemStatsDecoder"
HTTP Input

Plugin Name: HttpInput

HttpInput plugins intermittently poll remote HTTP URLs for data and populate message objects based on the results
of the HTTP interactions. Messages will be populated as follows:

* Uuid: Type 4 (random) UUID generated by Heka.
e Timestamp: Time HTTP request is completed.

* Type: heka.httpinput.data or heka.httpinput.error depending on whether or not the request completed.
(Note that a response returned with an HTTP error code is still considered complete and will generate
type heka.httpinput.data.)

* Hostname: Hostname of the machine on which Heka is running.
* Payload: Entire contents of the HT TP response body.

* Severity: HTTP response 200 uses success_severity config value, all other results use error_severity config
value.

* Logger: Fetched URL.

* Fields[”Status”] (string): HTTP status string value (e.g. “200 OK”).

* Fields[”StatusCode™] (int): HTTP status code integer value.

* Fields[”ResponseSize”] (int): Value of HTTP Content-Length header.

¢ Fields[”’ResponseTime”] (float64): Clock time elapsed for HTTP request, in seconds.
¢ Fields[’Protocol’’] (string): HTTP protocol used for the request (e.g. “HTTP/1.0”)

The Fields values above will only be populated in the event of a completed HTTP request. Also, it is possible to
specify a decoder to further process the results of the HTTP response before injecting the message into the router.

Config:

¢ url (string): A HTTP URL which this plugin will regularly poll for data. This option cannot be used with the
urls option. No default URL is specified.

e urls (array): New in version 0.5.

An array of HTTP URLs which this plugin will regularly poll for data. This option cannot be used with
the url option. No default URLSs are specified.

* method (string): New in version 0.5.
The HTTP method to use for the request. Defaults to “GET”.
¢ headers (subsection): New in version 0.5.
Subsection defining headers for the request. By default the User-Agent header is set to “Heka”
* body (string): New in version 0.5.
The request body (e.g. for an HTTP POST request). No default body is specified.
* username (string): New in version 0.5.

The username for HTTP Basic Authentication. No default username is specified.

2.4. Inputs 35

Heka Documentation, Release 0.10.0b2

» password (string): New in version 0.5.
The password for HTTP Basic Authentication. No default password is specified.
* ticker_interval (uint): Time interval (in seconds) between attempts to poll for new data. Defaults to 10.
* success_severity (uint): New in version 0.5.
Severity level of successful HTTP request. Defaults to 6 (information).
* error_severity (uint): New in version 0.5.

Severity level of errors, unreachable connections, and non-200 responses of successful HTTP requests.
Defaults to 1 (alert).

Example:

[HttpInput]

url = "http://localhost:9876/"

ticker_interval = 5

success_severity = 6

error_severity =1

decoder = "MyCustomJsonDecoder"
[HttpInput.headers]
user—agent = "MyCustomUserAgent"

HTTP Listen Input

New in version 0.5.
Plugin Name: HttpListenInput

HttpListenInput plugins start a webserver listening on the specified address and port. If no decoder is specified data in
the request body will be populated as the message payload. Messages will be populated as follows:

e Uuid: Type 4 (random) UUID generated by Heka.
* Timestamp: Time HTTP request is handled.
» Type: heka.httpdata.request
* Hostname: The remote network address of requester.
* Payload: Entire contents of the HT TP request body.
 Severity: 6
* Logger: HttpListenInput
 Fields["UserAgent”] (string): Request User-Agent header (e.g. “GitHub Hookshot dd0772a”).
* Fields[”ContentType”] (string): Request Content-Type header (e.g. “application/x-www-form-urlencoded”).
¢ Fields[”’Protocol’’] (string): HTTP protocol used for the request (e.g. “HTTP/1.0”)
New in version 0.6.

All query parameters are added as fields. For example, a request to “127.0.0.1:8325%user=bob” will create a field
“user” with the value “bob”.

Config:

* address (string): An IP address:port on which this plugin will expose a HTTP server. Defaults to
“127.0.0.1:8325”.

New in version 0.7.

36 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

* headers (subsection, optional): It is possible to inject arbitrary HTTP headers into each outgoing response
by adding a TOML subsection entitled “headers” to you HttpOutput config section. All entries in the

subsection must be a list of string values.

New in version 0.9.

* request_headers ([]Jstring): Add additional request headers as message fields. Defaults to empty list.

New in version 0.10.

« auth_type (string, optional): If requiring Authentication specify “Basic” or “API” To use “API” you must set
a header called “X-API-KEY” with the value of the “api_key” config.

* username (string, optional): Username to check against if auth_type = “Basic”.

* password (string, optional): Password to check against if auth_type = “Basic”.

« api_key (string, optional): String to validate the “X-API-KEY” header against when using auth_type = “API”

to false.

use_tls (bool): Specifies whether or not SSL/TLS encryption should be used for the TCP connections. Defaults

tls (TIsConfig): A sub-section that specifies the settings to be used for any SSL/TLS encryption. This will only

have any impact if use_tls is set to true. See Configuring TLS.

Example:
[HttpListenInput]
address = "0.0.0.0:8325"
With Basic Auth:
[HttpListenInput]
address = "0.0.0.0:8325"
auth_type = "Basic"
username = "foo"
password = "bar"

With API Key Auth:
[HttpListenInput]
address = "0.0.0.0:8325"
auth_type = "API"
api_key = "1234567"
Kafka Input

Plugin Name: KafkaInput

Connects to a Kafka broker and subscribes to messages from the specified topic and partition.

Config:

¢ id (string) Client ID string. Default is the hostname.

 addrs ([Istring) List of brokers addresses.

* metadata_retries (int) How many times to retry a metadata request when a partition is in the middle of leader

election. Default is 3.

» wait_for_election (uint32) How long to wait for leader election to finish between retries (in milliseconds).

Default is 250.

2.4. Inputs

37

Heka Documentation, Release 0.10.0b2

* background_refresh_frequency (uint32) How frequently the client will refresh the cluster metadata in the
background (in milliseconds). Default is 600000 (10 minutes). Set to 0 to disable.

* max_open_reqests (int) How many outstanding requests the broker is allowed to have before blocking at-
tempts to send. Default is 4.

* dial_timeout (uint32) How long to wait for the initial connection to succeed before timing out and returning
an error (in milliseconds). Default is 60000 (1 minute).

* read_timeout (uint32) How long to wait for a response before timing out and returning an error (in millisec-
onds). Default is 60000 (1 minute).

* write_timeout (uint32) How long to wait for a transmit to succeed before timing out and returning an error (in
milliseconds). Default is 60000 (1 minute).

* topic (string) Kafka topic (must be set).
* partition (int32) Kafka topic partition. Default is 0.

* group (string) A string that uniquely identifies the group of consumer processes to which this consumer be-
longs. By setting the same group id multiple processes indicate that they are all part of the same consumer
group. Default is the id.

¢ default_fetch_size (int32) The default (maximum) amount of data to fetch from the broker in each request.
The default is 32768 bytes.

* min_fetch_size (int32) The minimum amount of data to fetch in a request - the broker will wait until at least
this many bytes are available. The default is 1, as 0 causes the consumer to spin when no messages are
available.

¢ max_message_size (int32) The maximum permittable message size - messages larger than this will return
MessageTooLarge. The default of O is treated as no limit.

e max_wait_time (uint32) The maximum amount of time the broker will wait for min_fetch_size bytes to be-
come available before it returns fewer than that anyways. The default is 250ms, since O causes the con-
sumer to spin when no events are available. 100-500ms is a reasonable range for most cases.

* offset_method (string) The method used to determine at which offset to begin consuming messages. The valid
values are:

— Manual Heka will track the offset and resume from where it last left off (default).
— Newest Heka will start reading from the most recent available offset.
— Oldest Heka will start reading from the oldest available offset.

 event_buffer_size (int) The number of events to buffer in the Events channel. Having this non-zero permits
the consumer to continue fetching messages in the background while client code consumes events, greatly
improving throughput. The default is 16.

Example 1: Read Fxa messages from partition 0.

[FxaKafkaInputTest]

type = "KafkalInput"

topic = "Fxa"

addrs = ["localhost:9092"]

Example 2: Send messages between two Heka instances via a Kaftka broker.

On the producing instance
[KafkaOutputExample]

type = "KafkaOutput"
message_matcher = "TRUE"
topic = "heka"

38 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

addrs = ["kafka-broker:9092"]
encoder = "ProtobufEncoder"

On the consuming instance
[KafkaInputExample]

type = "Kafkalnput"

topic = "heka"

addrs = ["kafka-broker:9092"]
splitter = "KafkaSplitter"
decoder = "ProtobufDecoder"

[KafkaSplitter]
type = "NullSplitter"
use_message_bytes = true

Logstreamer Input

New in version 0.5.

Plugin Name:: LogstreamerInput

Tails a single log file, a sequential single log source, or multiple log sources of either a single logstream or multiple

logstreams.

See also:

Complete documentation with examples

Config:

* hostname (string): The hostname to use for the messages, by default this will be the machine’s qualified host-
name. This can be set explicitly to ensure it’s the correct name in the event the machine has multiple

interfaces/hostnames.

¢ oldest_duration (string): A time duration string (e.x. “2s”, “2m”, “2h”). Logfiles with a last modified time
older than oldest_duration ago will not be included for parsing. Defaults to “720h” (720 hours, i.e.

30 days).

* journal_directory (string): The directory to store the journal files in for tracking the location that has been
read to thus far. By default this is stored under heka’s base directory.

* log_directory (string): The root directory to scan files from. This scan is recursive so it should be suitably
restricted to the most specific directory this selection of logfiles will be matched under. The log_directory

path will be prepended to the file_match.

* rescan_interval (int): During logfile rotation, or if the logfile is not originally present on the system, this
interval is how often the existence of the logfile will be checked for. The default of 5 seconds is usually

fine. This interval is in milliseconds.

file_match (string): Regular expression used to match files located under the 1og_directory. This regular

expression has $ added to the end automatically if not already present, and 1og_directory as the
prefix. WARNING: file_match should typically be delimited with single quotes, indicating use of a raw
string, rather than double quotes, which require all backslashes to be escaped. For example, ‘access\.log’
will work as expected, but “access\.log” will not, you would need “access\\.log” to achieve the same

result.

« priority (list of strings): When using sequential logstreams, the priority is how to sort the logfiles in order

from oldest to newest.

2.4. Inputs

39

Heka Documentation, Release 0.10.0b2

« differentiator (list of strings): When using multiple logstreams, the differentiator is a set of strings that will
be used in the naming of the logger, and portions that match a captured group from the £ile_match will
have their matched value substituted in.

¢ translation (hash map of hash maps of ints): A set of translation mappings for matched groupings to the ints
to use for sorting purposes.

* splitter (string, optional): Defaults to “TokenSplitter”, which will split the log stream into one Heka message
per line.

Process Input

Plugin Name: ProcessInput

Executes one or more external programs on an interval, creating messages from the output. Supports a chain of
commands, where stdout from each process will be piped into the stdin for the next process in the chain. ProcessInput
creates Fields[ExitStatus] and Fields[SubcmdErrors]. Fields[ExitStatus] represents the platform dependent exit status
of the last command in the command chain. Fields[SubcmdErrors] represents errors from each sub command, in the
format of “Subcommand[<subcommand ID>] returned an error: <error message>".

Config:

e command (map[uint]Jcmd_config): The command is a structure that contains the full path to the binary, com-
mand line arguments, optional enviroment variables and an optional working directory (see below). Pro-
cessInput expects the commands to be indexed by integers starting with 0, where 0 is the first process in
the chain.

e ticker_interval (uint): The number of seconds to wait between each run of command. Defaults to 15. A
ticker_interval of 0 indicates that the command is run only once, and should only be used for long running
processes that do not exit. If ticker_interval is set to O and the process exits, then the ProcessInput will exit,
invoking the restart behavior (see Configuring Restarting Behavior). Ignored when used in conjunction
with Process Directory Input, where ticker_interval value is instead parsed from the directory path.

¢ immediate_start (bool): If true, heka starts process immediately instead of waiting for first interval defined by
ticker_interval to pass. Defaults to false.

* stdout (bool): If true, for each run of the process chain a message will be generated with the last command in
the chain’s stdout as the payload. Defaults to true.

* stderr (bool): If true, for each run of the process chain a message will be generated with the last command in
the chain’s stderr as the payload. Defaults to false.

* timeout (uint): Timeout in seconds before any one of the commands in the chain is terminated.

* retries (RetryOptions, optional): A sub-section that specifies the settings to be used for restart behavior. See
Configuring Restarting Behavior

cmd_config structure:
¢ bin (string): The full path to the binary that will be executed.
* args ([Istring): Command line arguments to pass into the executable.

¢ env ([]Jstring): Used to set environment variables before command is run. Default is nil, which uses the heka
process’s environment.

33

¢ directory (string): Used to set the working directory of Bin Default is
ing directory.

, which uses the heka process’s work-

Example:

40 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

[on_space]
type = "TokenSplitter"

delimiter = " "

[DemoProcessInput]
type = "ProcessInput"
ticker_interval = 2
splitter = "on_space"
stdout = true

stderr = false

[DemoProcessInput.command.O0]
bin = "/bin/cat"
args = ["../testsupport/process_input_pipes_test.txt"]

[DemoProcessInput.command.1]
bin = "/usr/bin/grep"
args = ["ignore"]

Process Directory Input

Plugin Name: ProcessDirectoryInput
New in version 0.5.

The ProcessDirectorylnput periodically scans a filesystem directory looking for ProcessInput configuration files. The
ProcessDirectorylnput will maintain a pool of running ProcessInputs based on the contents of this directory, refreshing
the set of running inputs as needed with every rescan. This allows Heka administrators to manage a set of data
collection processes for a running hekad server without restarting the server.

Each ProcessDirectorylnput has a process_dir configuration setting, which is the root folder of the tree where sched-
uled jobs are defined. It should contain exactly one nested level of subfolders, named with ASCII numeric characters
indicating the interval, in seconds, between each process run. These numeric folders must contain TOML files which
specify the details regarding which processes to run.

For example, a process_dir might look like this:

—/usr/share/heka/processes/

| =5

| - check_myserver_running.toml
|-61

|- cat_proc_mounts.toml

|- get_running_processes.toml
| =302

|- some_custom_query.toml

This indicates one process to be run every five seconds, two processes to be run every 61 seconds, and one process to
be run every 302 seconds.

Note that ProcessDirectorylnput will ignore any files that are not nested one level deep, are not in a folder named for
an integer 0 or greater, and do not end with ‘.toml’. Each file which meets these criteria, such as those shown in the
example above, should contain the TOML configuration for exactly one Process Input, matching that of a standalone
ProcessInput with the following restrictions:

* The section name must be ProcessInput. Any TOML sections named anything other than ProcessInput will be
ignored.

e Any specified ticker_interval value will be ignored. The ticker interval value to use will be parsed from the
directory path.

2.4. Inputs 41

Heka Documentation, Release 0.10.0b2

By default, if the specified process fails to run or the ProcessInput config fails for any other reason, ProcessDirectory-
Input will log an error message and continue, as if the ProcessInput’s can_exit flag has been set to true. If the managed
ProcessInput’s can_exit flag is manually set to false, it will trigger a Heka shutdown.

Config:

¢ ticker_interval (int, optional): Amount of time, in seconds, between scans of the process_dir. Defaults to 300
(i.e. 5 minutes).

* process_dir (string, optional): This is the root folder of the tree where the scheduled jobs are defined. Abso-
lute paths will be honored, relative paths will be computed relative to Heka’s globally specified share_dir.
Defaults to “processes” (i.e. “$share_dir/processes”).

* retries (RetryOptions, optional): A sub-section that specifies the settings to be used for restart behavior of
the ProcessDirectorylnput (not the individual ProcessInputs, which are configured independently). See
Configuring Restarting Behavior

Example:

[ProcessDirectoryInput]
process_dir = "/etc/hekad/processes.d"
ticker_interval = 120

Sandbox Input

New in version 0.9.
Plugin Name: SandboxInput

The SandboxInput provides a flexible execution environment for data ingestion and transformation without the need
to recompile Heka. Like all other sandboxes it needs to implement a process_message function. However, it doesn’t
have to return until shutdown. If you would like to implement a polling interface process_message can return zero
when complete and it will be called again the next time TickerInterval fires (if ticker_interval was set to zero it would
simply exit after running once). See Sandbox. Config:

 All of the common input configuration parameters are ignored since the data processing (splitting and decoding)
should happen in the plugin.

e Common Sandbox Parameters

— instruction_limit is always set to zero for SandboxInputs

Example

[MemInfo]

type = "SandboxInput"
filename = "meminfo.lua"

[MemInfo.config]
path

"/proc/meminfo"

Stat Accumulator Input

Plugin Name: StatAccumInput

Provides an implementation of the StatAccumulator interface which other plugins can use to submit Stzat objects for
aggregation and roll-up. Accumulates these stats and then periodically emits a ““stat metric” type message containing
aggregated information about the stats received since the last generated message.

Config:

42 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

* emit_in_payload (bool): Specifies whether or not the aggregated stat information should be emitted in the
payload of the generated messages, in the format accepted by the carbon portion of the graphite graphing
software. Defaults to true.

e emit_in_fields (bool): Specifies whether or not the aggregated stat information should be emitted in the mes-
sage fields of the generated messages. Defaults to false. NOTE: At least one of ‘emit_in_payload’ or
‘emit_in_fields’ must be true or it will be considered a configuration error and the input won’t start.

 percent_threshold (int): Percent threshold to use for computing “upper_N%” type stat values. Defaults to 90.
* ticker_interval (uint): Time interval (in seconds) between generated output messages. Defaults to 10.

* message_type (string): String value to use for the Type value of the emitted stat messages. Defaults to
“heka.statmetric”.

* legacy_namespaces (bool): If set to true, then use the older format for namespacing counter stats, with rates
recorded under stats.<counter_name> and absolute count recorded under stats_counts.<counter_name>.
See statsd metric namespacing. Defaults to false.

* global_prefix (string): Global prefix to use for sending stats to graphite. Defaults to “stats”.

* counter_prefix (string): Secondary prefix to use for namespacing counter metrics. Has no impact unless
legacy_namespaces is set to false. Defaults to “counters”.

* timer_prefix (string): Secondary prefix to use for namespacing timer metrics. Defaults to “timers”.
» gauge_prefix (string): Secondary prefix to use for namespacing gauge metrics. Defaults to “gauges”.
« statsd_prefix (string): Prefix to use for the statsd numStats metric. Defaults to “statsd”.

* delete_idle_stats (bool): Don’t emit values for inactive stats instead of sending O or in the case of gauges,
sending the previous value. Defaults to false.

Example:

[StatAccumInput]
emit_in_fields = true
delete_idle_stats = true
ticker_interval = 5

Statsd Input

Plugin Name: StatsdInput

Listens for statsd protocol counter, timer, or gauge messages on a UDP port, and generates Stat objects that are handed
to a StatAccumulator for aggregation and processing.

Config:

¢ address (string): An IP address:port on which this plugin will expose a statsd server. Defaults to
“127.0.0.1:8125”.

* stat_accum_name (string): Name of a StatAccumlInput instance that this StatsdInput will use as its StatAccu-
mulator for submitting received stat values. Defaults to “StatAccumInput”.

¢ max_msg_size (uint): Size of a buffer used for message read from statsd. In some cases, when statsd sends
a lots in single message of stats it’s required to boost this value. All over-length data will be truncated
without raising an error. Defaults to 512.

Example:

2.4. Inputs 43

http://graphite.wikidot.com/carbon
http://graphite.wikidot.com/
https://github.com/etsy/statsd/blob/master/docs/namespacing.md
https://github.com/b/statsd_spec

Heka Documentation, Release 0.10.0b2

[StatsdInput]
address = ":8125"
stat_accum_name = "custom_stat_accumulator"

TCP Input

Plugin Name: TcpInput

Listens on a specific TCP address and port for messages. If the message is signed it is verified against the signer name
and specified key version. If the signature is not valid the message is discarded otherwise the signer name is added to
the pipeline pack and can be use to accept messages using the message_signer configuration option.

Config:

 address (string): An IP address:port on which this plugin will listen.
New in version 0.4.

* decoder (string): Defaults to “ProtobufDecoder”.
New in version 0.5.

* use_tls (bool): Specifies whether or not SSL/TLS encryption should be used for the TCP connections. Defaults
to false.

¢ tls (TIsConfig): A sub-section that specifies the settings to be used for any SSL/TLS encryption. This will only
have any impact if use_tls is set to true. See Configuring TLS.

CLINNT3

* net (string, optional, default: “tcp”) Network value must be one of: “tcp”, “tcp4”, “tcp6”, “unix” or “unix-
packet”.

New in version 0.6.

« keep_alive (bool): Specifies whether or not TCP keepalive should be used for established TCP connections.
Defaults to false.

 keep_alive_period (int): Time duration in seconds that a TCP connection will be maintained before keepalive
probes start being sent. Defaults to 7200 (i.e. 2 hours).

New in version 0.9.
« splitter (string): Defaults to “HekaFramingSplitter”.

Example:

[TcpInput]
address = ":5565"

UDP Input

Plugin Name: UdpInput

Listens on a specific UDP address and port for messages. If the message is signed it is verified against the signer name
and specified key version. If the signature is not valid the message is discarded otherwise the signer name is added to
the pipeline pack and can be use to accept messages using the message_signer configuration option.

Note: The UDP payload is not restricted to a single message; since the stream parser is being used multiple messages
can be sent in a single payload.

Config:

44 Chapter 2. hekad Command Line Options

http://en.wikipedia.org/wiki/Keepalive#TCP_keepalive

Heka Documentation, Release 0.10.0b2

* address (string): An IP address:port or Unix datagram socket file path on which this plugin will listen.

* signer: Optional TOML subsection. Section name consists of a signer name, underscore, and numeric version
of the key.

— hmac_key (string): The hash key used to sign the message.
New in version 0.5.
* net (string, optional, default: “udp’) Network value must be one of: “udp”, “udp4”, “udp6”, or “unixgram”.

New in version 0.10.

¢ set_hostname (boolean, default: false) Set Hostname field from remote address.

Example:

[UdpInput]

address = "127.0.0.1:4880"
splitter = "HekaFramingSplitter"
decoder = "ProtobufDecoder"

[UdpInput.signer.ops_0]

hmac_key = "4865ey9urgkidls xtbO0[71f9rzcivthkm"
[UdpInput.signer.ops_1]
hmac_key = "xdd908lfcgikauexdi8elogusridaxoalf"

[UdpInput.signer.dev_1]
hmac_key = "haeoufyaiofeugdsnzaogpi.ua,dp.804u"

2.5 Splitters

New in version 0.9.

2.5.1 Common Splitter Parameters

There are some configuration options that are universally available to all Heka splitter plugins. These will be consumed
by Heka itself when Heka initializes the plugin and do not need to be handled by the plugin-specific initialization code.

* keep_truncated (bool, optional): If true, then any records that exceed the capacity of the input buffer will still
be delivered in their truncated form. If false, then these records will be dropped. Defaults to false.

* use_message_bytes (bool, optional): Most decoders expect to find the raw, undecoded input data stored as
the payload of the received Heka Message struct. Some decoders, however, such as the ProtobufDe-
coder, expect to receive a blob of bytes representing an entire Message struct, not just the payload. In
this case, the data is expected to be found on the MsgBytes attribute of the Message’s PipelinePack. If
use_message_bytes is true, then the data will be written as a byte slice to the MsgBytes attribute, otherwise
it will be written as a string to the Message payload. Defaults to false in most cases, but defaults to true
for the HekaFramingSplitter, which is almost always used with the ProtobufDecoder.

* min_buffer_size (uint, optional): The initial size, in bytes, of the internal buffer that the SplitterRunner will
use for buffering data streams. Must not be greater than the globally configured max_message_size. De-
faults to 8KiB, although certain splitters may specify a different default.

¢ deliver_incomplete_final (bool, optional): When a splitter is used to split a stream, that stream can end part
way through a record. It’s sometimes appropriate to drop that data, but in other cases the incomplete

2.5. Splitters 45

Heka Documentation, Release 0.10.0b2

data can still be useful. If ‘deliver_incomplete_final’ is set to true, then when the SplitterRunner’s Split-
Stream method is used a delivery attempt will be made with any partial record data that may come through

immediately before an EOF. Defaults to false.

2.5.2 Available Splitter Plugins

. _config_heka_framing_splitter

Heka Framing Splitter

Plugin Name: HekaFramingSplitter

A HekaFramingSplitter is used to split streams of data that use Heka’s built- in Stream Framing, with a protocol buffers

encoded message header supporting HMAC key authentication.

A default configuration of the HekaFramingSplitter is automatically registered as an available splitter plugin as
“HekaFramingSplitter”, so it is only necessary to add an additional TOML section if you want to use an instance

of the splitter with settings other than the default.
Config:

* signer: Optional TOML subsection. Section name consists of a signer name, underscore, and numeric version

of the key.

— hmac_key (string): The hash key used to sign the message.

* use_message_bytes (bool, optional): The HekaFramingSplitter is almost always used in concert with an

instance of ProtobufDecoder, which expects the protocol buffer

message data to be available in the

PipelinePack’s MsgBytes attribute, so use_message_bytes defaults to true.

« skip_authentication (bool, optional): Usually if a HekaFramingSplitter identifies an incorrectly signed mes-
sage, that message will be silently dropped. In some cases, however, such as when loading a stream of
protobuf encoded Heka messages from a file system file, it may be desirable to skip authentication alto-

gether. Setting this to true will do so. Defaults to false.

Example:

[acl_splitter]
type "HekaFramingSplitter"

[acl_splitter.signer.ops_0]
hmac_key "4865ey9urgkidls xtbO0[71f9rzcivthkm"
[acl_splitter.signer.ops_1]
hmac_key "xdd9081fcgikauexdi8elogusridaxoalf"

[acl_splitter.signer.dev_1]
hmac_key "haeoufyaiofeugdsnzaogpi.ua,dp.804u"

[tep_control]

type = "TcpInput”

address = ":5566"
"acl_splitter"

splitter

Null Splitter

Plugin Name: NullSplitter

46 Chapter 2

. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

The NullSplitter is used in cases where the incoming data is already naturally divided into logical messages, such that
Heka doesn’t need to do any further splitting. For instance, when used in conjunction with a UdpInput, the contents of
each UDP packet will be made into a separate message.

Note that this means generally the NullSplitter should not be used with a stream oriented input transport, such as with
Tcplnput or LogstreamerInput. If this is done then the splitting will be arbitrary, each message will contain whatever
happens to be the contents of a particular read operation.

The NullSplitter has no configuration options, and is automatically registered as an available splitter plugin of the
name “NullSplitter”, so it doesn’t require a separate TOML configuration section.

Regex Splitter

Plugin Name: RegexSplitter

A RegexSplitter considers any text that matches a specified regular expression to represent a boundary on which
records should be split. The regular expression may consist of exactly one capture group. If a capture group is
specified, then the captured text will be included in the returned record. If not, then the returned record will not
include the text that caused the regular expression match.

Config:

¢ delimiter (string) Regular expression to be used as the record boundary. May contain zero or one specified
capture groups.

¢ delimiter_eol (bool, optional): Specifies whether the contents of a delimiter capture group should be appended
to the end of a record (true) or prepended to the beginning (false). Defaults to true. If the delimiter
expression does not specify a capture group, this will have no effect.

Example:

[mysql slow_query_splitter]
type = "RegexSplitter"
delimiter = '\n(# User@Host:)'
delimiter_eol = false

Token Splitter

Plugin Name: TokenSplitter

A TokenSplitter is used to split an incoming data stream on every occurrence (or every Nth occurrence) of a single,
one byte token character. The token will be included as the final character in the returned record.

A default configuration of the TokenSplitter (i.e. splitting on every newline) is automatically registered as an available
splitter plugin as “TokenSplitter”, so additional TOML sections don’t need to be added unless you want to use different
settings.

Config:

¢ delimiter (string, optional): String representation of the byte token to be used as message delimiter. Defaults
to “\n”.

 count (uint, optional): Number of instances of the delimiter that should be encountered before returning a
record. Defaults to 1. Setting to 0 has no effect, 0 and 1 will be treated identically. Often used in

conjunction with the deliver_incomplete_final option set to true, to ensure trailing partial records are still
delivered.

Example:

2.5. Splitters a7

Heka Documentation, Release 0.10.0b2

[split_on_space]
type = "TokenSplitter"
delimiter = " "

[split_every 50th_newline_keep_partial]

type = "TokenSplitter"
count = 50
deliver_incomplete_final = true

2.6 Decoders

2.6.1 Available Decoder Plugins

Apache Access Log Decoder

New in version 0.6.

Plugin Name: SandboxDecoder
File Name: lua_decoders/apache_access.lua

Parses the Apache access logs based on the Apache ‘LogFormat’ configuration directive. The Apache format specifiers
are mapped onto the Nginx variable names where applicable e.g. %a -> remote_addr. This allows generic web filters
and outputs to work with any HTTP server input.

Config:

* log_format (string) The ‘LogFormat’ configuration directive from the apache2.conf. %t variables are con-
verted to the number of nanosecond since the Unix epoch and used to set the Timestamp on the message.
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html

* type (string, optional, default nil): Sets the message “Type’ header to the specified value

e user_agent_transform (bool, optional, default false) Transform the http_user_agent into
user_agent_browser, user_agent_version, user_agent_os.

« user_agent_keep (bool, optional, default false) Always preserve the http_user_agent value if transform is en-
abled.

 user_agent_conditional (bool, optional, default false) Only preserve the http_user_agent value if transform
is enabled and fails.

 payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[TestWebserver]

type = "LogstreamerInput"
log_directory = "/var/log/apache"
file_match = 'access\.log'
decoder = "CombinedLogDecoder"

[CombinedLogDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/apache_access.lua"

48 Chapter 2. hekad Command Line Options

http://httpd.apache.org/docs/2.4/mod/mod_log_config.html

Heka Documentation, Release 0.10.0b2

[CombinedLogDecoder.config]

type = "combined"

user_agent_transform = true

combined log format

log_format = '"$h %1 %u %t \"%r\" %$>s %0 \"%{Referer}i\" \"%${User-Agent}i\"'

common log format
log_format = '$h %1 %u %t \"%r\" $>s %0

vhost_combined log format
log_format = '%v:%p S%h %1 %u %t \"$r\" $>s $0 \"${Referer}i\" \"&{User-Agent}i\"'

referer log format
log_format = '${Referer}i —-> U’

Example Heka Message
Timestamp 2014-01-10 07:04:56 -0800 PST
Type combined
Hostname test.example.com
Pid 0
UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5
Logger TestWebserver
Payload
EnvVersion
Severity 7
Fields

ELINT3

name: ’remote_user’” value_string:

LLINT3

name:”http_x_forwarded_for” value_string:
name:” http_referer” value_string:”-*

name:”body_bytes_sent” value_type:DOUBLE representation:”B” value_double:82
name:” remote_addr” value_string:”62.195.113.219” representation:”ipv4”
name:”status” value_type:DOUBLE value_double:200

name:” request” value_string:”GET /v1/recovery_email/status HTTP/1.1”
name:”user_agent_os” value_string: FirefoxOS”

name:”user_agent_browser” value_string: Firefox”

name:”user_agent_version” value_type:DOUBLE value_double:29

Geo IP Decoder

New in version 0.6.
Plugin Name: GeolpDecoder

Decoder plugin that generates GeolP data based on the IP address of a specified field. It uses the GeolP Go project as a
wrapper around MaxMind’s geoip-api-c library, and thus assumes you have the library downloaded and installed. Cur-
rently, only the GeoLiteCity database is supported, which you must also download and install yourself into a location to
be referenced by the db_file config option. By default the database file is opened using “GEOIP_MEMORY_CACHE”

2.6. Decoders 49

https://github.com/abh/geoip
https://github.com/maxmind/geoip-api-c/releases/

Heka Documentation, Release 0.10.0b2

mode. This setting is hard- coded into the wrapper’s geoip.go file. You will need to manually override that code if you

want to specify one of the other modes listed here.

Note: Due to external dependencies, this plugin is not compiled in to the releas
be included in a source build if GeolP.h is available in the include path during

ed Heka binaries. It will automatically
build time. The generated binary will

then only work on machines with the appropriate GeolP shared library (e.g. libGeolP.so.1) installed.

Note: If you are using this with the ES output you will likely need to specify the raw_bytes_fields option for the
target_field specified. This is required to preserve the formatting of the JSON object.

Config:

 db_file: The location of the GeoLiteCity.dat database. Defaults to “/var/cache/hekad/GeoLiteCity.dat”

* source_ip_field: The name of the field containing the IP address you want to derive the location for.

« target_field: The name of the new field created by the decoder. The decoder will output a JSON object with

the following elements:
— latitute: string,
— longitude: string,

— location: [float64, float64],

% GeoJSON format intended for use as a geo_point for ES output. Useful when using Kibana’s

Bettermap panel
— coordinates: [string, string |,
— countrycode: string,
— countrycode3: string,
— region: string,
— city: string,
— postalcode: string,
— areacode: int,

— charset: int,

continentalcode: string

[apache_geoip_decoder]

type = "GeoIpDecoder"
db_file="/etc/geoip/GeoLiteCity.dat"
source_ip_field="remote_host"
target_field="geoip"

Graylog Extended Log Format Decoder

New in version 0.8.

Plugin Name: SandboxDecoder
File Name: lua_decoders/graylog_extended.lua

50 Chapter 2

. hekad Command Line Options

https://github.com/maxmind/geoip-api-c/blob/master/README.md#memory-caching-and-other-options/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-geo-point-type.html/
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-geo-point-type.htmlhttp://www.elasticsearch.org/guide/en/kibana/current/_bettermap.html/

Heka Documentation, Release 0.10.0b2

Parses a payload containing JSON in the Graylog2 Extended Format specficiation.
http://graylog2.org/resources/gelf/specification

Config:
* type (string, optional, default nil): Sets the message “Type’ header to the specified value
 payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example of Graylog2 Exteded Format Log

{

"version": "1.1",

"host": "rogueethic.com",

"short_message": "This is a short message to identify what is going on.",
"full _message": "An entire backtrace\ncould\ngo\nhere",

"timestamp": 1385053862.3072,

"level": 1,

"_user_id": 9001,

" _some_info": "foo",

" _some_env_var": "bar"

}

Example Heka Configuration

[GELFLogInput]

type = "LogstreamerInput"
log_directory = "/var/log"
file_match = 'application\.gelf'
decoder = "GraylogDecoder"

[GraylogDecoder]

type = "SandboxDecoder"

filename = "lua_decoders/graylog_decoder.lua"
[GraylogDecoder.config]

type = "gelf"

payload_keep = true

JSON Decoder

New in version 0.10.

Plugin Name: SandboxDecoder
File Name: lua_decoders/json.lua

Parses a payload containing JSON.
Config:

* type (string, optional, default “json’): Sets the message “Type’ header to the specified value, will be overrid-
den if Type config option is specified.

 payload_keep (bool, optional, default false) Whether to preserve the original log line in the message payload.

* map_fields (bool, optional, default false) Enables mapping of json fields to heka message fields.

2.6. Decoders 51

http://graylog2.org/resources/gelf/specification

Heka Documentation, Release 0.10.0b2

Payload (string, optional, default nil) String specifying json field to map to message Payload, expects field
value to be a string. Overrides the keep_payload config option.

Uuid (string, optional, default nil) String specifying json field to map to message Uuid, expects field value to
be a string.

Type (string, optional, default nil) String specifying json field to map to to message Type, expects field value
to be a string. Overrides the type config option

Logger (string, optional, default nil) String specifying json field to map to message Logger, expects field
value to be a string.

Hostname (string, optional, default nil) String specifying json field to map to message Hostname, expects
field value to be a string.

Severity (string, optional, default nil) String specifying json field to map to message Severity, expects field
value to be numeric.

EnvVersion (string, optional, default nil) String specifying json field to map to message EnvVersion, expects
field value to be numeric.

Pid (string, optional, default nil) String specifying json field to map to message Pid, expects field value to be
numeric

Timestamp (string, optional, default nil) String specifying json field to map to message Timestamp, if field
value not in ns-since-epoch format, provide the timestamp_format config option.

timestamp_format (string, optional, default nil) String specifying the format used to parse extracted JISON
values for the Timestamp fields, in standard strftime format. If left blank, timestamp values will be assumed
to be in nanoseconds-since-epoch.

timestamp in strftime format.

{

}

s

"msg": "Start Request",
"event": "artemis.web.ensure-running",
"extra": {

"workspace—-id": "cN907xLngi"
"time": "2015-05-06T20:40:05.5099262342",
"severity": 1

Example Heka Configuration

[ArtemisLogInput]

type

= "LogstreamerInput"

log_directory = "/srv/artemis/current/logs"
file_match = 'artemis\.log'
decoder = "JsonDecoder"

[IJsonDecoder]

type

= "SandboxDecoder"

filename = "lua_decoders/json.lua"

[JsonDecoder.config]
type = "artemis"
payload_keep = true
map_fields = true
Severity = "severity"

Example Heka Message

52

Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

Timestamp 2015-05-06 20:40:05 -0800 PST
Type artemis

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-aSel-ae92e5954df5
Payload

EnvVersion

Severity 1

Fields

name:’msg” value_type:STRING value_string:”Start Request”

name:”event” value_type:STRING value_string:”artemis.web.ensure-running”
name:”’extra.workspace-id” value_type:STRING value_string:’cN907xLngi”
name:”’time” value_type:STRING value_string:"2015-05-06T20:40:05.509926234Z7”

Linux CPU Stats Decoder

New in version 0.10.

Plugin Name: SandboxDecoder
File Name: lua_decoders/linux_procstat.lua

Parses a payload containing the contents of file /proc/stat.
Config:
 payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[ProcStats]

type = "FilePollingInput"
ticker_interval = 1
file_path = "/proc/stat"
decoder = "ProcStatDecoder"

[ProcStatDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/linux_procstat.lua"

Example Heka Message
Timestamp 2014-12-10 22:38:24 +0000 UTC
Type stats.proc
Hostname yourhost.net
Pid 0
Uuid d2546942-7¢36-4042-ad2e-fobfdacl 1cdb
Logger

2.6. Decoders 53

Heka Documentation, Release 0.10.0b2

Payload

EnvVersion

Severity 7

Fields
name:”cpu” type:double value:[14384,125,3330,946000,333,0,356,0,0,0]
name:”’cpu[1-#]” type:double value:[14384,125,3330,946000,333,0,356,0,0,0]
name:”ctxt” type:double value:2808304
name:”btime” type:double value: 1423004780
name:”intr” type:double value:[14384,125,3330,0,0,0,0,0,0,0...0]
name:”’processes’ type:double value:3811
name:”’procs_running” type:double value:1

name:”’procs_blocked” type:double value:0
name:”’softirq” type:double value:[288977,23,101952,19,13046,19217,7,...]

Cpu fields: 123456789 10 user nice system idle [iowait] [irq] [softirq] [steal] [guest] [guestnice]
Note: systems provide user, nice, system, idle. Other fields depend on kernel.

intr This line shows counts of interrupts serviced since boot time, for each of the possible system
interrupts. The first column is the total of all interrupts serviced including unnumbered ar-
chitecture specific interrupts; each subsequent column is the total for that particular numbered
interrupt. Unnumbered interrupts are not shown, only summed into the total.

Linux Disk Stats Decoder

New in version 0.7.

Plugin Name: SandboxDecoder
File Name: lua_decoders/linux_diskstats.lua

Parses a payload containing the contents of a /sys/block/$DISK/stat file (where $DISK is a disk identifier such as sda)
into a Heka message struct. This also tries to obtain the TickerInterval of the input it recieved the data from, by
extracting it from a message field named TickerInterval.

Config:
 payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[DiskStats]

type = "FilePollingInput"
ticker_interval =1

file_path = "/sys/block/sdal/stat"
decoder = "DiskStatsDecoder"

[DiskStatsDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/linux_diskstats.lua"

Example Heka Message
Timestamp 2014-01-10 07:04:56 -0800 PST

54 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

Type stats.diskstats

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5
Payload

EnvVersion

Severity 7

Fields

name:”ReadsCompleted” value_type:DOUBLE value_double:”20123”
name: ReadsMerged” value_type:DOUBLE value_double:”11267”
name:”SectorsRead” value_type:DOUBLE value_double:”1.094968e+06”
name:”TimeReading” value_type:DOUBLE value_double:”45148”
name:”WritesCompleted” value_type:DOUBLE value_double:”1278”
name:”WritesMerged” value_type:DOUBLE value_double:”1278”
name:”SectorsWritten” value_type:DOUBLE value_double:”206504”
name:”TimeWriting” value_type:DOUBLE value_double:”3348”
name:”TimeDoinglO” value_type:DOUBLE value_double:”4876”
name:”WeightedTimeDoinglO” value_type:DOUBLE value_double: 48356
name:”’NumIOInProgress” value_type:DOUBLE value_double:”3”
name:” TickerInterval” value_type:DOUBLE value_double:”2”

name: FilePath” value_string:”/sys/block/sda/stat”

Linux Load Average Decoder

New in version 0.7.

Plugin Name: SandboxDecoder
File Name: lua_decoders/linux_loadavg.lua

Parses a payload containing the contents of a /proc/loadavg file into a Heka message.
Config:
 payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[LoadAvg]

type = "FilePollingInput"
ticker_interval = 1
file_path = "/proc/loadavg"
decoder = "LoadAvgDecoder"

[LoadAvgDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/linux_loadavg.lua"

Example Heka Message

2.6. Decoders 55

Heka Documentation, Release 0.10.0b2

Timestamp 2014-01-10 07:04:56 -0800 PST
Type stats.loadavg

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-aSel-ae92e5954df5
Payload

EnvVersion

Severity 7

Fields

name:”1MinAvg” value_type:DOUBLE value_double:”3.05”
name:”5MinAvg” value_type:DOUBLE value_double:”1.21”
name:”15MinAvg” value_type:DOUBLE value_double:”0.44”
name:”NumProcesses” value_type:DOUBLE value_double:”11”
name:”FilePath” value_string:”/proc/loadavg”

Linux Memory Stats Decoder

New in version 0.7.
Plugin Name: SandboxDecoder File Name: lua_decoders/linux_memstats.lua
Parses a payload containing the contents of a /proc/meminfo file into a Heka message.
Config:
* payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[MemStats]

type = "FilePollingInput"
ticker_interval = 1
file_path = "/proc/meminfo"
decoder = "MemStatsDecoder"

[MemStatsDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/linux_memstats.lua"

Example Heka Message
Timestamp 2014-01-10 07:04:56 -0800 PST
Type stats.memstats
Hostname test.example.com
Pid 0
UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5
Payload
EnvVersion

Severity 7

56 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

Fields

name:”MemTotal” value_type:DOUBLE representation:”’kB” value_double:”4047616”
name:”MemFree” value_type:DOUBLE representation:’kB” value_double:”3432216”
name:”Buffers” value_type:DOUBLE representation:”’kB” value_double:’82028”
name:”Cached” value_type:DOUBLE representation:”’kB” value_double:”368636”
name:” FilePath” value_string:”/proc/meminfo”

The total available fields can be found in man procfs. All fields are of type double, and the representation is in kB
(except for the HugePages fields). Here is a full list of fields available:

MemTotal, MemFree, Buffers, Cached, SwapCached, Active, Inactive, Active(anon), Inactive(anon), Active(file),
Inactive(file), Unevictable, Mlocked, SwapTotal, SwapFree, Dirty, Writeback, AnonPages, Mapped, Shmem, Slab,
SReclaimable, SUnreclaim, KernelStack, PageTables, NFS_Unstable, Bounce, WritebackTmp, CommitLimit, Com-
mitted_AS, VmallocTotal, VmallocUsed, VmallocChunk, HardwareCorrupted, AnonHugePages, HugePages_Total,
HugePages_Free, HugePages_Rsvd, HugePages_Surp, Hugepagesize, DirectMap4k, DirectMap2M, DirectMap1G.

Note that your available fields may have a slight variance depending on the system’s kernel version.

Linux netdev Decoder

New in version 0.10.

Plugin Name: SandboxDecoder
File Name: lua_decoders/linux_netdev.lua

Parses a payload containing the contents of a /proc/net/net/dev file into a Heka message.
Config:
 payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[Netdev]

type = "FilePollingInput"
ticker_interval = 1
file_path = "/proc/net/dev"
decoder = "NetdevDecoder"

[NetdevDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/linux_netdev.lua"

Example Heka Message
Timestamp 2015-09-03 13:44:25 +0000 UTC
Type stats.netdev
Hostname ultrathieu
Pid 0
Uuid cf705300-b3d7-4e5a-a56e-37846£8c246a
Logger Netdev
Payload

2.6. Decoders 57

Heka Documentation, Release 0.10.0b2

EnvVersion
Severity 7
Fields

name:”lo_transmit_carrier” type:integer value:0
name:”ethQ_receive_fifo” type:integer value:0
name:”lo_transmit_bytes” type:integer value:50278
name:”lo_receive_multicast” type:integer value:0
name:”’ethQ_receive_packets” type:integer value:0
name:”lo_transmit_compressed” type:integer value:0
name:”eth(Q_transmit_packets” type:integer value:0
name:”lo_transmit_colls” type:integer value:0
name:”ethQ_transmit_compressed” type:integer value:0
name:”ethQ_receive_drop” type:integer value:0
name:”’ethO_receive_frame” type:integer value:0
name:”’ethQ_transmit_errs” type:integer value:0
name:”ethQ_transmit_fifo” type:integer value:0
name:”lo_receive_drop” type:integer value:0
name:”’ethO_receive_bytes” type:integer value:0
name:”lo_transmit_drop” type:integer value:0
name:”lo_receive_frame” type:integer value:0
name:” ’FilePath” type:string value:”/proc/net/dev”
name:”lo_transmit_fifo” type:integer value:0
name:”lo_transmit_errs” type:integer value:0
name:”eth(Q_transmit_drop” type:integer value:0
name:”lo_transmit_packets” type:integer value:601
name:”lo_receive_compressed” type:integer value:0
name:”’lo_receive_fifo” type:integer value:0
name:”’lo_receive_errs” type:integer value:0
name:”’ethQ_transmit_carrier” type:integer value:0
name:”’lo_receive_packets” type:integer value:601
name:”lo_receive_bytes” type:integer value:50278
name:”’eth(Q_transmit_colls” type:integer value:0
name:”ethQ_receive_compressed” type:integer value:0
name:”ethQ_receive_errs” type:integer value:0
name:”’ethO_receive_multicast” type:integer value:0
name:”’ethQ_transmit_bytes” type:integer value:0

Linux netstat Decoder

New in version 0.10.

Plugin Name: SandboxDecoder
File Name: lua_decoders/linux_netstat.lua

Parses a payload containing the contents of a /proc/net/netstat or /proc/net/snmp file into a Heka message.

58 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

Config:
* payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[NetNetstat]

type = "FilePollingInput"
ticker_interval =1

file_path = "/proc/net/netstat"
decoder = "NetstatDecoder"

[NetSnmp]

type = "FilePollingInput"
ticker_interval =1
file_path = "/proc/net/snmp"
decoder = "NetstatDecoder"

[NetstatDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/linux_netstat.lua"

Example Heka Message
Timestamp 2015-08-28 15:52:00 +0000 UTC
Type stats.netstat
Hostname test.example.com
Pid 0
Uuid 90c202d1-1375-4ec2-ac8c-eb53b2850d19
Logger NetSnmp
Payload
EnvVersion
Severity 7
Fields

name:”Ip_FragCreates” type:integer value:0
name:”Ip_FragOKs” type:integer value:0
name:”Icmp_InTimestamps” type:integer value:0
name:”Ip_InUnknownProtos” type:integer value:0
name:”Ip_ReasmFails” type:integer value:0
name:”Icmp_OutErrors” type:integer value:0
name:”Icmp_InDestUnreachs” type:integer value:19812
name:”Ip_InReceives” type:integer value: 718979
name:”Ip_ReasmTimeout” type:integer value:0
name:”Ip_InHdrErrors” type:integer value:0
name:”Ip_ReasmOKSs” type:integer value:0
name:”Icmp_OutSrcQuenchs” type:integer value:0
name:”Icmp_InAddrMaskReps” type:integer value:0
name:”Ip_OutNoRoutes” type:integer value:1788
name:”IcmpMsg_OutType(” type:integer value:81
name:”Ip_FragFails” type:integer value:0

2.6. Decoders 59

Heka Documentation, Release 0.10.0b2

name:”’Icmp_OutTimeExcds” type:integer value:0
name:”Ip_ReasmReqds” type:integer value:0
name:”IcmpMsg_InType3” type:integer value:19812
name:”Ip_InDiscards” type:integer value:0
name:”Icmp_InTimestampReps” type:integer value:0
name:”Icmp_InEchoReps” type:integer value:0
name:”Icmp_OutAddrMasks” type:integer value:0
name:”Icmp_InMsgs” type:integer value:19893
name:”Icmp_OutMsgs” type:integer value:19892
name:”Icmp_OutTimestampReps” type:integer value:0
name:”Icmp_InSrcQuenchs” type:integer value:0
name:”’IcmpMsg_OutType3” type:integer value: 19811
name:”Icmp_OutEchoReps” type:integer value:§1
name:”Icmp_OutParmProbs” type:integer value:0
name:”’Icmp_OutRedirects” type:integer value:0
name:”Icmp_OutEchos” type:integer value:0
name:”Ip_DefaultTTL” type:integer value:64
name:”Icmp_InCsumErrors” type:integer value:0
name:”’IcmpMsg_InType8” type:integer value:81
name:”Icmp_InRedirects” type:integer value:0
name:”Ip_OutDiscards” type:integer value:9272
name: ’FilePath” type:string value:”/proc/net/snmp”
name:”Icmp_InErrors” type:integer value:0
name:”Ip_Forwarding” type:integer value:1
name:”Icmp_OutTimestamps” type:integer value:0
name:”Icmp_InEchos” type:integer value:81
name:”Icmp_InAddrMasks” type:integer value:0
name:”Icmp_InTimeExcds” type:integer value:0
name:”Ip_OutRequests” type:integer value:544286
name:”Ip_InDelivers” type:integer value:718236
name:”Ip_InAddrErrors” type:integer value:31
name:”Icmp_OutAddrMaskReps” type:integer value:0
name:”Ip_ForwDatagrams” type:integer value:0
name:”Icmp_InParmProbs” type:integer value:0
name:”Icmp_OutDestUnreachs” type:integer value: 19811

MultiDecoder

Plugin Name: MultiDecoder

This decoder plugin allows you to specify an ordered list of delegate decoders. The MultiDecoder will pass the
PipelinePack to be decoded to each of the delegate decoders in turn until decode succeeds. In the case of failure to
decode, MultiDecoder will return an error and recycle the message.

Config:

* subs ([Istring): An ordered list of subdecoders to which the MultiDecoder will delegate. Each item in the list
should specify another decoder configuration section by section name. Must contain at least one entry.

¢ log_sub_errors (bool): If true, the DecoderRunner will log the errors returned whenever a delegate decoder

60 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

fails to decode a message. Defaults to false.

 cascade_strategy (string): Specifies behavior the MultiDecoder should exhibit with regard to cascading
through the listed decoders. Supports only two valid values: “first-wins” and “all”. With “first-wins”, each
decoder will be tried in turn until there is a successful decoding, after which decoding will be stopped.
With “all”, all listed decoders will be applied whether or not they succeed. In each case, decoding will
only be considered to have failed if none of the sub-decoders succeed.

Here is a slightly contrived example where we have protocol buffer encoded messages coming in over a TCP con-
nection, with each message containin a single nginx log line. Our MultiDecoder will run each message through two
decoders, the first to deserialize the protocol buffer and the second to parse the log text:

[TepInput]

address = ":5565"

parser_type = "message.proto"
decoder = "shipped-nginx-decoder"

[shipped-nginx—-decoder]

type = "MultiDecoder"

subs = ['ProtobufDecoder', 'nginx—-access-decoder']
cascade_strategy = "all"

log_sub_errors = true

[ProtobufDecoder]
[nginx—access—decoder]
type = "SandboxDecoder"

filename = "lua_decoders/nginx_access.lua"

[nginx—access—decoder.config]

type = "combined"
user_agent_transform = true
log_format = 'Sremote_addr - Sremote_user [S$time_local] "S$Srequest" S$status $body_byt

MySQL Slow Query Log Decoder

New in version 0.6.

Plugin Name: SandboxDecoder
File Name: lua_decoders/mysql_slow_query.lua

Parses and transforms the MySQL slow query logs. Use mariadb_slow_query.lua to parse the MariaDB variant of the
MySQL slow query logs.

Config:

* truncate_sql (int, optional, default nil) Truncates the SQL payload to the specified number of bytes (not UTF-
8 aware) and appends ...”. If the value is nil no truncation is performed. A negative value will truncate
the specified number of bytes from the end.

Example Heka Configuration

[Sync—-1_5-SlowQuery]

type = "LogstreamerInput"
log_directory = "/var/log/mysqgl"
file_match = 'mysgl-slow\.log'

2.6. Decoders 61

es_sent

"Sht

Heka Documentation, Release 0.10.0b2

parser_type = "regexp"

delimiter = "\n (# User@Host:)"
delimiter_ location = "start"
decoder = "MySqglSlowQueryDecoder"

[MySqglSlowQueryDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/mysqgl_slow_query.lua"

[MySglSlowQueryDecoder.config]
truncate_sqgl = 64

Example Heka Message
Timestamp 2014-05-07 15:51:28 -0700 PDT
Type mysql.slow-query
Hostname 127.0.0.1
Pid 0
UUID 5324dd93-47df-485b-a88e-429f0fcd57d6
Logger Sync-1_5-SlowQuery
Payload /* [queryName=FIND_ITEMS] */ SELECT bso.userid, bso.collection, ...
EnvVersion
Severity 7
Fields

name:”Rows_examined” value_type:DOUBLE value_double: 16458
name:”Query_time” value_type:DOUBLE representation:”’s” value_double:7.24966
name:”Rows_sent” value_type:DOUBLE value_double:5001

name:”Lock_time” value_type:DOUBLE representation:”s” value_double:0.047038

Nginx Access Log Decoder

New in version 0.5.

Plugin Name: SandboxDecoder
File Name: lua_decoders/nginx_access.lua

Parses the Nginx access logs based on the Nginx ‘log_format’ configuration directive.
Config:

* log_format (string) The ‘log_format’ configuration directive from the nginx.conf.

$time_local or

$time_iso8601 variable is converted to the number of nanosecond since the Unix epoch and used to set the

Timestamp on the message. http://nginx.org/en/docs/http/ngx_http_log_module.html

* type (string, optional, default nil): Sets the message ‘Type’ header to the specified value

* user_agent_transform (bool, optional, default false) Transform the http_user_agent into

user_agent_browser, user_agent_version, user_agent_os.

62 Chapter 2. hekad Command Line Options

http://nginx.org/en/docs/http/ngx_http_log_module.html

Heka Documentation, Release 0.10.0b2

 user_agent_keep (bool, optional, default false) Always preserve the http_user_agent value if transform is en-

abled.

 user_agent_conditional (bool, optional, default false) Only preserve the http_user_agent value if transform

is enabled and fails.

 payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

[TestWebserver]

type = "LogstreamerInput"
log_directory = "/var/log/nginx"
file_match = 'access\.log'
decoder = "CombinedLogDecoder"

[CombinedLogDecoder]
type = "SandboxDecoder"

filename = "lua_decoders/nginx_access.lua"

[CombinedLogDecoder.config]

type = "combined"

user_agent_transform = true

combined log format

log_format = 'Sremote_addr - Sremote_user

[Stime_local] "S$Srequest" S$status S$body_bytes_ 4

Example Heka Message

Timestamp 2014-01-10 07:04:56 -0800 PST

Type combined

Hostname test.example.com

Pid 0

UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5

Logger TestWebserver
Payload

EnvVersion

Severity 7

Fields

name:” ’remote_user’” value_string:
name:”http_x_forwarded_for” value_string:
name:”http_referer” value_string:

name:”’body_bytes_sent” value_type:DOUBLE representation:”B” value_double:82

name:”remote_addr” value_string:”62.195.113.219” representation:”’ipv4”

name:”’status” value_type:DOUBLE value_double:200

name: request” value_string:”GET /v1/recovery_email/status HTTP/1.1”

name:”user_agent_os” value_string: FirefoxOS”
name:”user_agent_browser” value_string: Firefox”

name:”user_agent_version” value_type:DOUBLE value_double:29

2.6. Decoders

63

ent "Shttp_re

Heka Documentation, Release 0.10.0b2

Nginx Error Log Decoder

New in version 0.6.

Plugin Name: SandboxDecoder
File Name: lua_decoders/nginx_error.lua

Parses the Nginx error logs based on the Nginx hard coded internal format.
Config:

* tz (string, optional, defaults to UTC) The conversion actually happens on the Go side since there isn’t good
TZ support here.

* type (string, optional, defaults to ‘“nginx.error’”): Sets the message ‘Type’ header to the specified value

Example Heka Configuration

[TestWebserverError]

type = "LogstreamerInput"
log_directory = "/var/log/nginx"
file_match = 'error\.log'
decoder = "NginxErrorDecoder"

[NginxErrorDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/nginx_error.lua"

[NginxErrorDecoder.config]
tz = "America/Los_Angeles"

Example Heka Message
Timestamp 2014-01-10 07:04:56 -0800 PST
Type nginx.error
Hostname trink-x230
Pid 16842
UUID 8e414f01-9d7f-4a48-aSel-ae92e5954df5
Logger TestWebserverError
Payload using inherited sockets from “6;”
EnvVersion
Severity 5
Fields

name:”tid” value_type:DOUBLE value_double:0
name:”connection” value_type:DOUBLE value_double:8878

Nginx Stub Status Decoder

New in version 0.10.

64 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

Plugin Name: SandboxDecoder
File Name: lua_decoders/nginx_stub_status.lua

Parses a payload containing the output of nginx’s

http://nginx.org/en/docs/http/ngx_http_stub_status_module.html
Config:

* type (string, optional, default ‘nginx_stub_status’) Set the message type.

« payload_keep (bool, optional, default false) Always preserve the original log line in the message payload.

Example Heka Configuration

module:

[NginxStubStatusInput]

type = "HttpInput"

url = "http://localhost:8090/nginx_status"
ticker_interval =1

success_severity = 6

error_severity = 1

decoder = "NginxStubStatusDecoder"

[NginxStubStatusDecoder]
filename = "lua_decoders/nginx_stub_status.lua"
type = "SandboxDecoder"

[NginxStubStatusDecoder.config]
payload_keep = false

Example Heka Message
Timestamp 2014-01-10 07:04:56 -0800 PST
Type nginx_stub_status
Hostname test.example.com
Pid 0
UUID 8e414f01-9d7f-4a48-a5e1-ae92e5954df5
Payload
EnvVersion
Severity 7
Fields

name:”connections” value_type:INTEGER value_integer:"291”
name:”accepts” value_type:INTEGER value_integer:”16630948”
name:”handled” value_type:INTEGER value_integer:”16630948”
name: requests” value_type:INTEGER value_integer:”31070465”
name:”reading” value_type:INTEGER value_integer:”6”
name:”writing” value_type:INTEGER value_integer:”179”
name:”waiting” value_type:INTEGER value_integer:”106”

Payload Regex Decoder

Plugin Name: PayloadRegexDecoder

2.6. Decoders

65

http://nginx.org/en/docs/http/ngx_http_stub_status_module.html

Heka Documentation, Release 0.10.0b2

Decoder plugin that accepts messages of a specified form and generates new outgoing messages from extracted data,
effectively transforming one message format into another.

Note: The Go regular expression tester is an invaluable tool for constructing and debugging regular expressions to be
used for parsing your input data.

Config:
* match_regex: Regular expression that must match for the decoder to process the message.

¢ severity_map: Subsection defining severity strings and the numerical value they should be translated to. hekad
uses numerical severity codes, so a severity of WARNING can be translated to 3 by settings in this section.
See Heka Message.

* message_fields: Subsection defining message fields to populate and the interpolated values that should be used.
Valid interpolated values are any captured in a regex in the message_matcher, and any other field that exists
in the message. In the event that a captured name overlaps with a message field, the captured name’s value
will be used. Optional representation metadata can be added at the end of the field name using a pipe
delimiter i.e. ResponseSizelB = “%ResponseSize%” will create Fields[ResponseSize] representing the
number of bytes. Adding a representation string to a standard message header name will cause it to be
added as a user defined field i.e., Payloadljson will create Fields[Payload] with a json representation (see
Field Variables).

Interpolated values should be surrounded with % signs, for example:

[my_decoder.message_fields]
Type = "%Type%Decoded"

This will result in the new message’s Type being set to the old messages Type with Decoded appended.

* timestamp_layout (string): A formatting string instructing hekad how to turn a time string into the actual time
representation used internally. Example timestamp layouts can be seen in Go’s time documentation. In ad-
dition to the Go time formatting, special timestamp_layout values of “Epoch”, “EpochMilli”, “EpochMi-
cro”, and “EpochNano” are supported for Unix style timestamps represented in seconds, milliseconds,
microseconds, and nanoseconds since the Epoch, respectively.

* timestamp_location (string): Time zone in which the timestamps in the text are presumed to be in. Should be
a location name corresponding to a file in the IANA Time Zone database (e.g. “America/Los_Angeles”),
as parsed by Go’s time.LoadLocation() function (see http://golang.org/pkg/time/#L.oadLocation). Defaults
to “UTC”. Not required if valid time zone info is embedded in every parsed timestamp, since those can
be parsed as specified in the timestamp_layout. This setting will have no impact if one of the supported
“Epoch*” values is used as the timestamp_layout setting.

¢ log_errors (bool): New in version 0.5.

If set to false, payloads that can not be matched against the regex will not be logged as errors. Defaults to
true.

Example (Parsing Apache Combined Log Format):

[apache_transform decoder]

type = "PayloadRegexDecoder"

match_regex = '”(?P<RemoteIP>\S+) \S+ \S+ \[(?P<Timestamp>["\]1]+)\] " (?P<Method>[A-Z]+)
timestamp_layout = "02/Jan/2006:15:04:05 -0700"

severities in this case would work only if a (?P<Severity>...) matching

group was present in the regex, and the log file contained this information.
[apache_transform decoder.severity_map]

DEBUG = 7

INFO = 6

66 Chapter 2. hekad Command Line Options

(?P<Url>["\s

https://regoio.herokuapp.com/
http://golang.org/pkg/time/#pkg-constants
http://golang.org/pkg/time/#LoadLocation

Heka Documentation, Release 0.10.0b2

WARNING = 4

[apache_transform decoder.message_fields]

Type = "ApacheLogfile"

Logger = "apache"

Url|uri = "$Urlsg"

Method = "$Method%"

Status = "%Status%"
RequestSize|B = "%$RequestSize%"
Referer = "$Referers"

Browser = "$Browsers"

Payload XML Decoder

Plugin Name: PayloadXmlDecoder

This decoder plugin accepts XML blobs in the message payload and allows you to map parts of the XML into Field
attributes of the pipeline pack message using XPath syntax using the xmlpath library.

Config:

» xpath_map: A subsection defining a capture name that maps to an XPath expression. Each expression can

fetch a single value, if the expression does not resolve to a valid node in the XML blob, the capture group
will be assigned an empty string value.

* severity_map: Subsection defining severity strings and the numerical value they should be translated to. hekad

uses numerical severity codes, so a severity of WARNING can be translated to 3 by settings in this section.
See Heka Message.

* message_fields: Subsection defining message fields to populate and the interpolated values that should be used.

Valid interpolated values are any captured in an XPath in the message_matcher, and any other field that
exists in the message. In the event that a captured name overlaps with a message field, the captured name’s
value will be used. Optional representation metadata can be added at the end of the field name using a
pipe delimiter i.e. ResponseSizelB = “%ResponseSize%” will create Fields[ResponseSize] representing
the number of bytes. Adding a representation string to a standard message header name will cause it to be
added as a user defined field i.e., Payloadljson will create Fields[Payload] with a json representation (see
Field Variables).

Interpolated values should be surrounded with % signs, for example:

[my_decoder.message_fields]
Type = "$Type%Decoded"

This will result in the new message’s Type being set to the old messages Type with Decoded appended.

* timestamp_layout (string): A formatting string instructing hekad how to turn a time string into the actual

time representation used internally. Example timestamp layouts can be seen in Go’s time documentation.
The default layout is ISO8601 - the same as Javascript. In addition to the Go time formatting, special
timestamp_layout values of “Epoch”, “EpochMilli”, “EpochMicro”, and “EpochNano” are supported for
Unix style timestamps represented in seconds, milliseconds, microseconds, and nanoseconds since the
Epoch, respectively.

* timestamp_location (string): Time zone in which the timestamps in the text are presumed to be in. Should be

a location name corresponding to a file in the IJANA Time Zone database (e.g. “America/Los_Angeles”),
as parsed by Go’s time.LoadLocation() function (see http://golang.org/pkg/time/#LoadLocation). Defaults
to “UTC”. Not required if valid time zone info is embedded in every parsed timestamp, since those can
be parsed as specified in the timestamp_layout. This setting will have no impact if one of the supported
“Epoch*” values is used as the timestamp_layout setting.

2.6. Decoders 67

http://launchpad.net/xmlpath
http://golang.org/pkg/time/#pkg-constants
http://golang.org/pkg/time/#LoadLocation

Heka Documentation, Release 0.10.0b2

Example:

[myxml_decoder]
type = "PayloadXmlDecoder"

[myxml_ decoder.xpath_map]
Count = "/some/path/count"
Name = "/some/path/name"
Pid = "//pid"

Timestamp = "//timestamp"

Severity = "//severity"

[myxml_ decoder.severity map]
DEBUG = 7

INFO = 6

WARNING = 4

[myxml_ decoder.message_fields]

Pid = "%pids"

StatCount = "%$Count%"
StatName = "$Name%"
Timestamp "$Timestamp%"

PayloadXmlDecoder’s xpath_map config subsection supports XPath as implemented by the xmlpath library.

* All axes are supported (“child”, “following-sibling”, etc)
 All abbreviated forms are supported (”.”, “//”, etc)

* All node types except for namespace are supported

* Predicates are restricted to [N], [path], and [path=literal] forms

* Only a single predicate is supported per path step

* Richer expressions and namespaces are not supported

Protobuf Decoder

Plugin Name: ProtobufDecoder

The ProtobufDecoder is used for Heka message objects that have been serialized into protocol buffers format. This
is the format that Heka uses to communicate with other Heka instances, so one will always be included in your Heka
configuration under the name “ProtobufDecoder”, whether specified or not. The ProtobufDecoder has no configuration

options.

The hekad protocol buffers message schema in defined in the message.proto file in the message package.

Example:

[ProtobufDecoder]

See also:

Protocol Buffers - Google’s data interchange format

Rsyslog Decoder

New in version 0.5.

68

Chapter 2. hekad Command Line Options

http://launchpad.net/xmlpath
http://code.google.com/p/protobuf/

Heka Documentation, Release 0.10.0b2

Plugin Name: SandboxDecoder
File Name: lua_decoders/rsyslog.lua

Parses the rsyslog output using the string based configuration template.
Config:

* hostname_keep (boolean, defaults to false) Always preserve the original ‘Hostname’ field set by
Logstreamer’s ‘hostname’ configuration setting.

* template (string) The ‘template’ configuration string from rsyslog.conf. http://rsyslog-5-8-6-
doc.neocities.org/rsyslog_conf_templates.html

* tz (string, optional, defaults to UTC) If your rsyslog timestamp field in the template does not carry zone offset
information, you may set an offset to be applied to your events here. Typically this would be used with the
“Traditional” rsyslog formats.

Parsing is done by Go, supports values of “UTC”, “Local”, or a location name corresponding to a file in
the TANA Time Zone database, e.g. “America/New_York”.

Example Heka Configuration

[RsyslogDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/rsyslog.lua"

[RsyslogDecoder.config]

type = "RSYSLOG_TraditionalFileFormat"

template = '$STIMESTAMPS $HOSTNAMES $%$syslogtag%%msg:::sp-if-no-lst-sp%%msg:::drop-last—11
tz = "America/Los_Angeles"

Example Heka Message
Timestamp 2014-02-10 12:58:58 -0800 PST
Type RSYSLOG_TraditionalFileFormat
Hostname trink-x230
Pid 0
UUID e0eef205-0b64-41e8-a307-5772b05e16¢c1
Logger Rsysloglnput
Payload “imklog 5.8.6, log source = /proc/kmsg started.”
EnvVersion
Severity 7
Fields

name:”’programname” value_string:”’kernel”

Sandbox Decoder

Plugin Name: SandboxDecoder

The SandboxDecoder provides an isolated execution environment for data parsing and complex transformations with-
out the need to recompile Heka. See Sandbox. Config:

e Common Sandbox Parameters

2.6. Decoders 69

\n'

http://rsyslog-5-8-6-doc.neocities.org/rsyslog_conf_templates.html
http://rsyslog-5-8-6-doc.neocities.org/rsyslog_conf_templates.html
http://golang.org/pkg/time/#LoadLocation

Heka Documentation, Release 0.10.0b2

Example

[sql_decoder]
type = "SandboxDecoder"
filename = "sqgl_decoder.lua"

Scribble Decoder

New in version 0.5.
Plugin Name: ScribbleDecoder

The ScribbleDecoder is a trivial decoder that makes it possible to set one or more static field values on every decoded
message. It is often used in conjunction with another decoder (i.e. in a MultiDecoder w/ cascade_strategy set to
“all”) to, for example, set the message type of every message to a specific custom value after the messages have been
decoded from Protocol Buffers format. Note that this only supports setting the exact same value on every message,
if any dynamic computation is required to determine what the value should be, or whether it should be applied to a
specific message, a Sandbox Decoder using the provided write_message API call should be used instead.

Config:

* message_fields: Subsection defining message fields to populate. Optional representation metadata can be added
at the end of the field name using a pipe delimiter i.e. hostlipv4 = “192.168.55.55” will create Fields[Host]
containing an IPv4 address. Adding a representation string to a standard message header name will cause it
to be added as a user defined field, i.e. Payloadljson will create Fields[Payload] with a json representation
(see Field Variables). Does not support Timestamp or Uuid.

Example (in MultiDecoder context)

[mytypedecoder]

type = "MultiDecoder"

subs = ["ProtobufDecoder", "mytype"]
cascade_strategy = "all"
log_sub_errors = true

[ProtobufDecoder]

[mytype]
type = "ScribbleDecoder"

[mytype.message_ fields]
Type = "MyType"

Stats To Fields Decoder

New in version 0.4.
Plugin Name: StatsToFieldsDecoder

The StatsToFieldsDecoder will parse time series statistics data in the graphite message format and encode the data
into the message fields, in the same format produced by a Stat Accumulator Input plugin with the emit_in_fields value
set to true. This is useful if you have externally generated graphite string data flowing through Heka that you’d like to
process without having to roll your own string parsing code.

This decoder has no configuration options. It simply expects to be passed messages with statsd string data in the
payload. Incorrect or malformed content will cause a decoding error, dropping the message.

70 Chapter 2. hekad Command Line Options

http://graphite.wikidot.com/getting-your-data-into-graphite#toc4

Heka Documentation, Release 0.10.0b2

The fields format only contains a single “timestamp” field, so any payloads containing multiple timestamps will end
up generating a separate message for each timestamp. Extra messages will be a copy of the original message except
a) the payload will be empty and b) the unique timestamp and related stats will be the only message fields.

Example:

‘ [StatsToFieldsDecoder]

2.7 Filters

2.7.1 Common Filter Parameters
There are some configuration options that are universally available to all Heka filter plugins. These will be consumed
by Heka itself when Heka initializes the plugin and do not need to be handled by the plugin-specific initialization code.

* message_matcher (string, optional): Boolean expression, when evaluated to true passes the message to the
filter for processing. Defaults to matching nothing. See: Message Matcher Syntax

* message_signer (string, optional): The name of the message signer. If specified only messages with this
signer are passed to the filter for processing.

¢ ticker_interval (uint, optional): Frequency (in seconds) that a timer event will be sent to the filter. Defaults to
not sending timer events.

New in version 0.7.

« can_exit (bool, optional) Whether or not this plugin can exit without causing Heka to shutdown. Defaults to
false for non-sandbox filters, and true for sandbox filters.

New in version 0.10.

* use_buffering (bool, optional) If true, all messages delivered to this filter will be buffered to disk before de-
livery, preventing back pressure and allowing retries in cases of message processing failure. Defaults to
false, unless otherwise specified by the individual filter’s documentation.

* buffering (QueueBufferConfig, optional) A sub-section that specifies the settings to be used for the buffering
behavior. This will only have any impact if use_buffering is set to true. See Configuring Buffering.

2.7.2 Available Filter Plugins

Circular Buffer Delta Aggregator

New in version 0.5.

Plugin Name: SandboxFilter
File Name: lua_filters/cbufd_aggregator.lua

Collects the circular buffer delta output from multiple instances of an upstream sandbox filter (the filters should all be
the same version at least with respect to their cbuf output). The purpose is to recreate the view at a larger scope in each
level of the aggregation i.e., host view -> datacenter view -> service level view.

Config:

2.7. Filters 7

Heka Documentation, Release 0.10.0b2

* enable_delta (bool, optional, default false) Specifies whether or not this aggregator should generate cbuf
deltas.

¢ anomaly_config(string) - (see Anomaly Detection Module) A list of anomaly detection specifications. If not
specified no anomaly detection/alerting will be performed.

* preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configura-
tion, then this value should be incremented every time the enable_delta configuration is changed to prevent
the plugin from failing to start during data restoration.

Example Heka Configuration

[TelemetryServerMetricsAggregator]

type = "SandboxFilter"

message_matcher = "Logger == 'TelemetryServerMetrics' && Fields[payload_type] == 'cbufd
ticker_interval = 60

filename = "lua_filters/cbufd_aggregator.lua"

preserve_data = true

[TelemetryServerMetricsAggregator.config]

enable_delta = false

anomaly_config = 'roc ("Request Statistics", 1, 15, 0, 1.5, true, false)'
preservation_version = 0

CBuf Delta Aggregator By Hosthame

New in version 0.5.

Plugin Name: SandboxFilter
File Name: lua_filters/cbufd_host_aggregatory.lua

Collects the circular buffer delta output from multiple instances of an upstream sandbox filter (the filters should all be
the same version at least with respect to their cbuf output). Each column from the source circular buffer will become
its own graph. i.e., ‘Error Count’ will become a graph with each host being represented in a column.

Config:

e max_hosts (uint) Pre-allocates the number of host columns in the graph(s). If the number of active hosts
exceed this value, the plugin will terminate.

e rows (uint) The number of rows to keep from the original circular buffer. Storing all the data from all the hosts
is not practical since you will most likely run into memory and output size restrictions (adjust the view
down as necessary).

* host_expiration (uint, optional, default 120 seconds) The amount of time a host has to be inactive before it
can be replaced by a new host.

* preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the max_hosts or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[TelemetryServerMetricsHostAggregator]

type = "SandboxFilter"
message_matcher = "Logger == 'TelemetryServerMetrics' && Fields[payload_type] == 'cbufd
ticker_interval = 60

72 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

filename = "lua_filters/cbufd_host_aggregator.lua"
preserve_data = true

[TelemetryServerMetricsHostAggregator.config]

max_hosts = 5

rows = 60
host_expiration = 120
preservation_version = 0

Counter Filter

Plugin Name: CounterFilter

Once per ticker interval a CounterFilter will generate a message of type heka .counter-output. The payload will contain
text indicating the number of messages that matched the filter’s message_matcher value during that interval (i.e. it
counts the messages the plugin received). Every ten intervals an extra message (also of type heka.counter-output) goes
out, containing an aggregate count and average per second throughput of messages received.

Config:
* ticker_interval (int, optional): Interval between generated counter messages, in seconds. Defaults to 5.

Example:

[CounterFilter]
message_matcher = "Type != 'heka.counter—-output'"

CPU Stats Filter

New in version 0.10.

Plugin Name: SandboxFilter
File Name: lua_filters/procstat.lua

Calculates deltas in /proc/stat data. Also emits CPU percentage utilization information.

Config:
 whitelist (string, optional, default “’) Only process fields that fit the pattern, defaults to match all.
* extras (boolean, optional, default false) Process extra fields like ctxt, softirq, cpu fields.
 percent_integer (boolean, optional, default true) Process percentage as whole number.

Example Heka Configuration

[ProcStats]

type = "FilePollingInput"
ticker_interval =1
file_path = "/proc/stat"
decoder = "ProcStatDecoder"

[ProcStatDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/linux_procstat.lua"

2.7. Filters 73

http://lua-users.org/wiki/PatternsTutorial

Heka Documentation, Release 0.10.0b2

[ProcStatFilter]
type = "SandboxFilter"
filename = "lua_filters/procstat.lua"
preserve_data = true
message_matcher = "Type == 'stats.procstat'"
[ProcStatFilter.config]

whitelist = "cpus$"

extras = false

percent_integer = true

Cpufields: 1234567809 10 user nice system idle [iowait] [irq] [softirq] [steal] [guest] [guestnice] Note: systems
provide user, nice, system, idle. Other fields depend on kernel.

user: Time spent executing user applications (user mode). nice: Time spent executing user applications with
low priority (nice). system: Time spent executing system calls (system mode). idle: Idle time. iowait: Time
waiting for I/O operations to complete. irq: Time spent servicing interrupts. softirq: Time spent servicing soft-
interrupts. steal: ticks spent executing other virtual hosts [virtualization setups] guest: Used in virtualization
setups. guestnice: running a niced guest

intr This line shows counts of interrupts serviced since boot time, for each of the possible system interrupts. The
first column is the total of all interrupts serviced including unnumbered architecture specific interrupts; each
subsequent column is the total for that particular numbered interrupt. Unnumbered interrupts are not shown,
only summed into the total.

ctxt 115315 The number of context switches that the system underwent.

btime 769041601 Boot time, in seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

processes 86031 Number of forks since boot.

procs_running 6 Number of process in runnable state. (Linux 2.5.45 onward.)

procs_blocked 2 Number of process blocked waiting for I/O to complete. (Linux 2.5.45 onward.)

softirq 288977 23 101952 19 13046 19217 7 19125 92077 389 43122 Time spent servicing soft-interrupts.

Disk Stats Filter

New in version 0.7.

Plugin Name: SandboxFilter
File Name: lua_filters/diskstats.lua

Graphs disk 10 stats. It automatically converts the running totals of Writes and Reads into rates of the values. The
time based fields are left as running totals of the amount of time doing IO. Expects to receive messages with disk
IO data embedded in a particular set of message fields which matches what is generated by Linux Disk Stats De-
coder: WritesCompleted, ReadsCompleted, SectorsWritten, SectorsRead, WritesMerged, ReadsMerged, TimeWrit-
ing, TimeReading, TimeDoinglO, WeightedTimeDoinglO, TickerInterval.

Config:

* rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

» anomaly_config(string) - (see Anomaly Detection Module)

Example Heka Configuration

74 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

[DiskStatsFilter]

type = "SandboxFilter"

filename = "lua_filters/diskstats.lua"
preserve_data = true

message_matcher = "Type == 'stats.diskstats'"
ticker interval = 10

Frequent ltems

New in version 0.5.

Plugin Name: SandboxFilter
File Name: lua_filters/frequent_items.lua

Calculates the most frequent items in a data stream.
Config:
* message_variable (string) The message variable name containing the items to be counted.

* max_items (uint, optional, default 1000) The maximum size of the sample set (higher will produce a more
accurate list).

¢ min_output_weight (uint, optional, default 100) Used to reduce the long tail output by only outputting the
higher frequency items.

* reset_days (uint, optional, default 1) Resets the list after the specified number of days (on the UTC day
boundary). A value of 0 will never reset the list.

Example Heka Configuration

[FxaAuthServerFrequentIP]

type = "SandboxFilter"

filename = "lua_filters/frequent_items.lua"

ticker_interval = 60

preserve_data = true

message_matcher = "Logger == 'nginx.access' && Type == 'fxa-auth-server'"

[FxaAuthServerFrequentIP.config]

message_variable = "Fields[remote_addr]"
max_items = 10000

min_output_weight = 100

reset_days = 1

Heka Memory Statistics

New in version 0.6.

Plugin Name: SandboxFilter
File Name: lua_filters/heka_memstat.lua

Graphs the Heka memory statistics using the heka.memstat message generated by pipeline/report.go.

2.7. Filters 75

Heka Documentation, Release 0.10.0b2

Config:

* rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

* sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

* anomaly_config (string, optional) See Anomaly Detection Module.

* preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the rows or sec_per_row configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[HekaMemstat]

type = "SandboxFilter"

filename = "lua_filters/heka_memstat.lua"
ticker_interval = 60

preserve_data = true

message_matcher = "Type == 'heka.memstat'"

HTTP Status Graph

New in version 0.5.

Plugin Name: SandboxFilter
File Name: lua_filters/http_status.lua

Graphs HTTP status codes using the numeric Fields[status] variable collected from web server access logs.
Config:

* sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

¢ rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

¢ anomaly_config (string, optional) See Anomaly Detection Module.

alert_throttle (uint, optional, default 3600) Sets the throttle for the anomaly alert, in seconds.

* preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the sec_per_row or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[FxaAuthServerHTTPStatus]

type = "SandboxFilter"

filename = "lua_filters/http_status.lua"

ticker_interval = 60

preserve_data = true

message_matcher = "Logger == 'nginx.access' && Type == 'fxa-auth-server'"

[FxaAuthServerHTTPStatus.config]

76 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

sec_per_row = 60

TOows 1440

anomaly_config = 'roc ("HTTP Status", 2, 15, 0, 1.5, true, false) roc("HTTP Status", 4,
alert_throttle = 300

preservation_version = 0

1

InfluxDB Batch Filter

New in version 0.10.

Plugin Name: SandboxFilter
File Name: lua_filters/influx_batch.lua

Converts Heka message contents to InfluxDB v0.9.0 API format and periodically emits batch messages with a payload
ready for delivery via HTTP.

Optionally includes all standard message fields as tags or fields and iterates through all of the dynamic fields to add
as points (series), skipping any fields explicitly omitted using the skip_fields config option. It can also map any Heka
message fields as tags in the request sent to the InfluxDB write API, using the fag_fields config option. All dynamic
fields in the Heka message are converted to separate points separated by newlines that are submitted to InfluxDB.

Note: This filter is intended for use with InfluxDB versions 0.9 or greater.

Config:

 decimal_precision (string, optional, default ¢“6’) String that is used in the string.format function to define the

number of digits printed after the decimal in number values. The string formatting of numbers is forced
to print with floating points because InfluxDB will reject values that change from integers to floats and
vice-versa. By forcing all numbers to floats, we ensure that InfluxDB will always accept our numerical
values, regardless of the initial format.

* name_prefix (string, optional, default nil) String to use as the name key’s prefix value in the generated line.

Supports message field interpolation. %f{fieldname}. Any fieldname values of “Type”, “Payload”, “Host-
name”, “Pid”, “Logger”, “Severity”, or “EnvVersion” will be extracted from the the base message schema,
any other values will be assumed to refer to a dynamic message field. Only the first value of the first
instance of a dynamic message field can be used for name name interpolation. If the dynamic field doesn’t
exist, the uninterpolated value will be left in the name. Note that it is not possible to interpolate either the
“Timestamp” or the “Uuid” message fields into the name, those values will be interpreted as referring to
dynamic message fields.

¢ name_prefix_delimiter (string, optional, default nil) String to use as the delimiter between the name_prefix

ELEL)

and the field name. This defaults to a blank string but can be anything else instead (such as ”.” to use
Graphite-like naming).

* skip_fields (string, optional, default nil) Space delimited set of fields that should not be included in the In-

fluxDB measurements being generated. Any fieldname values of “Type”, “Payload”, “Hostname”, “Pid”,
“Logger”, “Severity”, or “EnvVersion” will be assumed to refer to the corresponding field from the base
message schema. Any other values will be assumed to refer to a dynamic message field. The magic value
“all_base” can be used to exclude base fields from being mapped to the event altogether (useful if you
don’t want to use tags and embed them in the name_prefix instead).

* source_value_field (string, optional, default nil) If the desired behavior of this encoder is to extract one field

from the Heka message and feed it as a single line to InfluxDB, then use this option to define which field
to find the value from. Be careful to set the name_prefix field if this option is present or no measurement

2.7. Filters 7

Heka Documentation, Release 0.10.0b2

name will be present when trying to send to InfluxDB. When this option is present, no other fields besides

this one will be sent to InfluxDB as a measurement whatsoever.

tag_fields (string, optional, default “all_base”) Take fields defined and add them as tags of the measure-
ment(s) sent to InfluxDB for the message. The magic values “all” and “all_base” are used to map all
fields (including taggable base fields) to tags and only base fields to tags, respectively. If those magic
values aren’t used, then only those fields defined will map to tags of the measurement sent to InfluxDB.
The tag_fields values are independent of the skip_fields values and have no affect on each other. You can

skip fields from being sent to InfluxDB as measurements, but still include them as tags.

* timestamp_precision (string, optional, default “ms”) Specify the timestamp precision that you want the
event sent with. The default is to use milliseconds by dividing the Heka message timestamp by 1e6,
but this math can be altered by specifying one of the precision values supported by the InfluxDB write API

(ms, s, m, h). Other precisions supported by InfluxDB of n and u are not yet supported.

¢ value_field_key (string, optional, default ‘“value’) This defines the name of the InfluxDB measurement. We
default this to “value” to match the examples in the InfluxDB documentation, but you can replace that with

anything else that you prefer.

¢ flush_count (string, optional, default 0) Specifies a number of messages that will trigger a batch flush, if re-
ceived before a timer tick. Values of zero or lower mean to never flush on message count, only on ticker

intervals.

Example Heka Configuration

[LoadAvgPoller]

type = "FilePollingInput"
ticker_interval = 5

file_path = "/proc/loadavg"
decoder = "LinuxStatsDecoder"

[LoadAvgDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/linux_loadavg.lua"

[LinuxStatsDecoder]

type = "MultiDecoder"

subs = ["LoadAvgDecoder", "AddStaticFields"]
cascade_strategy = "all"

log_sub_errors = false

[AddStaticFields]
type = "ScribbleDecoder"

[AddStaticFields.message_fields]
Environment = "dev"

[InfluxdbLineFilter]

type = "SandboxFilter"
message_matcher = "Type =~ /stats.x/"
filename = "lua_filters/influx_batch.lua"

[InfluxdbLineFilter.config]

skip_fields = "xxall_basex* FilePath NumProcesses
tag_fields = "Hostname Environment"
timestamp_precision= "s"

flush_count = 10000

[PayloadEncoder]

Environment TickerInterval"

78 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

[InfluxdbOutput]

type = "HttpOutput"

message_matcher = "Fields|[payload_name] == 'influx_line'"

encoder = "PayloadEncoder"

address = "http://influxdbserver.example.com:8086/write?db=mydb&rp=mypolicy&precision=s
username = "influx_username"

password = "influx_password"

Load Average Filter

New in version 0.7.

Plugin Name: SandboxFilter
File Name: lua_filters/loadavg.lua

Graphs the load average and process count data. Expects to receive messages containing fields entitled /MinAvg,
SMinAvg, 15MinAvg, and NumProcesses, such as those generated by the Linux Load Average Decoder.

Config:

¢ sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

* rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

¢ anomaly_config (string, optional) See Anomaly Detection Module.

* preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the sec_per_row or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[LoadAvgFilter]

type = "SandboxFilter"

filename = "lua_filters/loadavg.lua"
ticker_interval = 60

preserve_data = true

message_matcher = "Type == 'stats.loadavg'"

Memory Stats Filter

New in version 0.7.

Plugin Name: SandboxFilter
File Name: lua_filters/memstats.lua

Graphs memory usage statistics. Expects to receive messages with memory usage data embedded in a specific set of
message fields, which matches the messages generated by Linux Memory Stats Decoder: MemFree, Cached, Active,
Inactive, VmallocUsed, Shmem, SwapCached.

2.7. Filters 79

Heka Documentation, Release 0.10.0b2

Config:

¢ sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

* rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

* anomaly_config (string, optional) See Anomaly Detection Module.

* preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the sec_per_row or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[MemoryStatsFilter]

type = "SandboxFilter"

filename = "lua_filters/memstats.lua"
ticker_ interval = 60

preserve_data = true

message_matcher = "Type == 'stats.memstats'"

Heka Process Message Failures

New in version 0.7.

Plugin Name: SandboxFilter
File Name: lua_filters/heka_process_message_failures.lua

Monitors Heka’s process message failures by plugin.
Config:

e anomaly_config(string) - (see Anomaly Detection Module) A list of anomaly detection specifications. If not
specified a default of ‘mww_nonparametric(“DEFAULT”, 1, 5, 10, 0.7)’ is used. The “DEFAULT” settings
are applied to any plugin without an explict specification.

Example Heka Configuration

[HekaProcessMessageFailures]

type = "SandboxFilter"

filename = "lua_filters/heka_process_message_failures.lua"

ticker_interval = 60

preserve_data = false # the counts are reset on Heka restarts and the monitoring should
message_matcher = "Type == 'heka.all-report'"

Heka Message Schema

New in version 0.5.

Plugin Name: SandboxFilter
File Name: lua_filters/heka_message_schema.lua

80 Chapter 2. hekad Command Line Options

be too.

Heka Documentation, Release 0.10.0b2

Generates documentation for each unique message in a data stream. The output is a hierarchy of Logger, Type,
EnvVersion, and a list of associated message field attributes including their counts (number in the brackets). This
plugin is meant for data discovery/exploration and should not be left running on a production system.

Config:
<none>

Example Heka Configuration

[SyncMessageSchema]

type = "SandboxFilter"

filename = "lua_filters/heka_message_schema.lua"

ticker_interval = 60

preserve_data = false

message_matcher = "Logger != 'SyncMessageSchema' && Logger =~ /"Sync/"

Example Output

Sync-1_5-Webserver [54600]
slf [54600]

-no version- [54600]
upstream_response_time (mismatch)
http_user_agent (string)
body_bytes_sent (number)
remote_addr (string)
request (string)
upstream_status (mismatch)
status (number)
request_time (number)
request_length (number)

Sync-1_5-SlowQuery [37]
mysql.slow-query [37]

-no version- [37]

Query_time (number)
Rows_examined (number)
Rows_sent (number)
Lock_time (number)

MySQL Slow Query

New in version 0.6.

Plugin Name: SandboxFilter
File Name: lua_filters/mysql_slow_query.lua

Graphs MySQL slow query data produced by the MySQL Slow Query Log Decoder.
Config:

2.7. Filters 81

Heka Documentation, Release 0.10.0b2

* sec_per_row (uint, optional, default 60) Sets the size of each bucket (resolution in seconds) in the sliding
window.

¢ rows (uint, optional, default 1440) Sets the size of the sliding window i.e., 1440 rows representing 60 seconds
per row is a 24 sliding hour window with 1 minute resolution.

* anomaly_config (string, optional) See Anomaly Detection Module.

 preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time the sec_per_row or rows configuration is changed
to prevent the plugin from failing to start during data restoration.

Example Heka Configuration

[Sync—-1_5-SlowQueries]

type = "SandboxFilter"

message_matcher = "Logger == 'Sync-1_5-SlowQuery'"
ticker interval = 60

filename = "lua_filters/mysql_slow_guery.lua"

[Sync—-1_5-SlowQueries.config]
anomaly_config = 'mww_nonparametric("Statistics", 5, 15, 10, 0.8)"
preservation_version = 0

Sandbox Filter

Plugin Name: SandboxFilter

The sandbox filter provides an isolated execution environment for data analysis. Any output generated by the sandbox
is injected into the payload of a new message for further processing or to be output.

Config:
e Common Filter Parameters
e Common Sandbox Parameters

¢ timer_event_on_shutdown (bool): True if the sandbox should have its timer_event function called on shut-
down.

Example:

[hekabench_counter]

type = "SandboxFilter"

message_matcher = "Type == 'hekabench'"
ticker_interval = 1

filename = "counter.lua"

preserve_data = true

profile = false

[hekabench_counter.config]
rows = 1440
sec_per_row = 60

Sandbox Manager Filter

Plugin Name: SandboxManagerFilter

The SandboxManagerFilter provides dynamic control (start/stop) of sandbox filters in a secure manner without stop-
ping the Heka daemon. Commands are sent to a SandboxManagerFilter using a signed Heka message. The intent is to

82 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

have one manager per access control group each with their own message signing key. Users in each group can submit
a signed control message to manage any filters running under the associated manager. A signed message is not an
enforced requirement but it is highly recommended in order to restrict access to this functionality.

SandboxManagerFilter Settings

e Common Filter Parameters

» working_directory (string): The directory where the filter configurations, code, and states are preserved. The
directory can be unique or shared between sandbox managers since the filter names are unique per manager.
Defaults to a directory in ${BASE_DIR }/sbxmgrs with a name generated from the plugin name.

¢ module_directory (string): The directory where ‘require’ will attempt to load the external Lua modules from.
Defaults to ${SHARE_DIR }/lua_modules.

* max_filters (uint): The maximum number of filters this manager can run.
New in version 0.5.

* memory_limit (uint): The number of bytes managed sandboxes are allowed to consume before being termi-
nated (default 8MiB).

¢ instruction_limit (uint): The number of instructions managed sandboxes are allowed to execute during the
process_message/timer_event functions before being terminated (default 1M).

¢ output_limit (uint): The number of bytes managed sandbox output buffers can hold before being terminated
(default 63KiB). Warning: messages exceeding 64KiB will generate an error and be discarded by the
standard output plugins (File, TCP, UDP) since they exceed the maximum message size.

Example

[OpsSandboxManager]

type = "SandboxManagerFilter"

message_signer = "ops"

message_matcher = "Type == 'heka.control.sandbox'" # automatic default setting
max_filters = 100

Stat Filter

Plugin Name: StatFilter

Filter plugin that accepts messages of a specfied form and uses extracted message data to feed statsd-style numerical
metrics in the form of Stat objects to a StatAccumulator.

Config:
¢ Metric:

Subsection defining a single metric to be generated. Both the name and value fields for each metric
support interpolation of message field values (from “Type’, ‘Hostname’, ‘Logger’, ‘Payload’, or any
dynamic field name) with the use of %% delimiters, so %Hostname% would be replaced by the
message’s Hostname field, and %Foo% would be replaced by the first value of a dynamic field called
“Foo™:

— type (string): Metric type, supports “Counter”, “Timer”, “Gauge”.
— name (string): Metric name, must be unique.

— value (string): Expression representing the (possibly dynamic) value that the StatFilter should
emit for each received message.

2.7. Filters 83

Heka Documentation, Release 0.10.0b2

— replace_dot (boolean): Replace all dots . per an underscore _ during the string interpolation.
It’s useful if you output this result in a graphite instance.

¢ stat_accum_name (string): Name of a StatAccumlInput instance that this StatFilter will use as its StatAccu-
mulator for submitting generate stat values. Defaults to “StatAccumInput”.

Example:

[StatAccumInput]
ticker_interval = 5

[StatsdInput]
address = "127.0.0.1:29301"

[Hits]
type = "StatFilter"

message_matcher = 'Type == "ApachelLogfile"'

[Hits.Metric.bandwidth]

type = "Counter"
name = "httpd.bytes.%Hostname%"
value = "$Bytes%"

[Hits.Metric.method_counts]

type = "Counter"
name = "httpd.hits.%Method%.%Hostname%"
value = "1"

Note: StatFilter requires an available StatAccumlInput to be running.

Stats Graph

New in version 0.7.

Plugin Name: SandboxFilter
File Name: lua_filters/stat_graph.lua

Converts stat values extracted from statmetric messages (see Stat Accumulator Input) to circular buffer data and pe-
riodically emits messages containing this data to be graphed by a DashboardOutput. Note that this filter expects the
stats data to be available in the message fields, so the StatAccumInput must be configured with emit_in_fields set to

true for this filter to work correctly.

Config:

* title (string, optional, default ‘““Stats’’): Title for the graph output generated by this filter.

¢ rows (uint, optional, default 300): The number of rows to store in our circular buffer. Each row represents

one time interval.

¢ sec_per_row (uint, optional, default 1): The number of seconds in each circular buffer time interval.

* stats (string): Space separated list of stat names. Each specified stat will be expected to be found in the fields of
the received statmetric messages, and will be extracted and inserted into its own column in the accumulated

circular buffer.

84

Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

stat_labels (string): Space separated list of header label names to use for the extracted stats. Must be in the
same order as the specified stats. Any label longer than 15 characters will be truncated.

« anomaly_config (string, optional): Anomaly detection configuration, see Anomaly Detection Module.

* preservation_version (uint, optional, default 0): If preserve_data = true is set in the SandboxFilter configu-
ration, then this value should be incremented every time any edits are made to your rows, sec_per_row,
stats, or stat_labels values, or else Heka will fail to start because the preserved data will no longer match
the filter’s data structure.

* stat_aggregation (string, optional, default “sum”):

13 2

Controls how the column data is aggregated when combining multiple circular buffers. “sum -
The total is computed for the time/column (default). “min” - The smallest value is retained for the
time/column. “max” - The largest value is retained for the time/column. “none” - No aggregation
will be performed the column.

* stat_unit (string, optional, default “count’’): The unit of measure (maximum 7 characters). Alpha numeric,
‘I, and “*’ characters are allowed everything else will be converted to underscores. i.e. KiB, Hz, m/s
(default: count).

Example Heka Configuration

[stat—graph]

type = "SandboxFilter"

filename = "lua_filters/stat_graph.lua"
ticker_interval = 10

preserve_data = true

message_matcher = "Type == 'heka.statmetric'"

[stat—graph.config]

title = "Hits and Misses"

rows = 1440

stat_aggregation = "none"

stat_unit = "count"

sec_per_row = 10

stats = "stats.counters.hits.count stats.counters.misses.count"
stat_labels = "hits misses"

anomaly_config = 'roc("Hits and Misses", 1, 15, 0, 1.5, true, false)
preservation_version = 0

roc ("Hits and Mig

Unique Items

New in version 0.6.

Plugin Name: SandboxFilter
File Name: lua_filters/unique_items.lua

Counts the number of unique items per day e.g. active daily users by uid.

Config:

* message_variable (string, required) The Heka message variable containing the item to be counted.

« title (string, optional, default “Estimated Unique Daily message_variable’) The graph title for the cbuf out-

put.

2.7. Filters

85

ses",

2,

15,

Heka Documentation, Release 0.10.0b2

* enable_delta (bool, optional, default false) Specifies whether or not this plugin should generate cbuf deltas.
Deltas should be enabled when sharding is used; see: Circular Buffer Delta Aggregator.

* preservation_version (uint, optional, default 0) If preserve_data = true is set in the SandboxFilter configura-
tion, then this value should be incremented every time the enable_delta configuration is changed to prevent
the plugin from failing to start during data restoration.

Example Heka Configuration

[FxaActiveDailyUsers]

type = "SandboxFilter"

filename = "lua_filters/unique_items.lua"

ticker_ interval = 60

preserve_data = true

message_matcher = "Logger == 'FxaAuth' && Type == 'request.summary' && Fields|[path] ==

[FxaActiveDailyUsers.config]

message_variable = "Fields[uid]"
title = "Estimated Active Daily Users"
preservation_version = 0

2.8 Encoders

New in version 0.6.

2.8.1 Available Encoder Plugins

Alert Encoder

Plugin Name: SandboxEncoder
File Name: lua_encoders/alert.lua

Produces more human readable alert messages.
Config:
<none>

Example Heka Configuration

/vl/certific:

[FxaAlert]

type = "SmtpOutput"

message_matcher = "Type == 'heka.sandbox-output' && Fields[payload_type] == 'alert' && 1
send_from = "hekalexample.com"

send_to = ["alert@example.com"]

auth = "Plain"

user = "test"

password = "testpw"

host = "localhost:25"

encoder = "AlertEncoder"

[AlertEncoder]
type = "SandboxEncoder"
filename = "lua_encoders/alert.lua"

logger =~

86 Chapter 2. hekad Command Line Options

/F:

Heka Documentation, Release 0.10.0b2

Example Output
Timestamp 2014-05-14T14:20:18Z
Hostname ip-10-226-204-51
Plugin FxaBrowserldHTTPStatus

Alert HTTP Status - algorithm: roc col: 1 msg: detected anomaly, standard deviation exceeds 1.5

CBUF Librato Encoder

New in version 0.8.

Plugin Name: SandboxEncoder
File Name: lua_encoders/cbuf _librato.lua

Extracts data from SandboxFilter circular buffer output messages and uses it to generate time series JSON structures
that will be accepted by Librato’s POST API. It will keep track of the last time it’s seen a particular message, keyed
by filter name and output name. The first time it sees a new message, it will send data from all of the rows except the
last one, which is possibly incomplete. For subsequent messages, the encoder will automatically extract data from all
of the rows that have elapsed since the last message was received.

The SandboxEncoder preserve_data setting should be set to true when using this encoder, or else the list of received
messages will be lost whenever Heka is restarted, possibly causing the same data rows to be sent to Librato multiple
times.

Config:

* message_key (string, optional, default ““% {Logger}: % {payload_name}”’) String to use as the key to differ-
entiate separate cbuf messages from each other. Supports message field interpolation.

Example Heka Configuration

[cbuf_ librato_encoder]
type = "SandboxEncoder"
filename = "lua_encoders/cbuf_librato.lua"
preserve_data = true
[cbuf_librato_encoder.config]
message_key = "%{Logger}:%{Hostname}:%{payload_name}"

[librato]
type = "HttpOutput"
message_matcher = "Type == 'heka.sandbox-output && Fields[payload_type] == 'cbuf'"
encoder = "cbuf_librato_encoder"
address = "https://metrics-api.librato.com/vl/metrics"
username = "username@example.com"
password = "SECRET"
[librato.headers]
Content-Type = ["application/json"]

Example Output

{"gauges":[{"value":l2,"measure_time":1410824950,"name":”HTTPfZOO","source":"thor"},{"v#lue":l,"meaSI

2.8. Encoders 87

http://dev.librato.com/v1/post/metrics

Heka Documentation, Release 0.10.0b2

ElasticSearch JSON Encoder

Plugin Name: ESJsonEncoder

This encoder serializes a Heka message into a clean JSON format, preceded by a separate JSON structure containing
information required for ElasticSearch BulkAPI indexing. The JSON serialization is done by hand, without the use
of Go’s stdlib JSON marshalling. This is so serialization can succeed even if the message contains invalid UTF-8
characters, which will be encoded as U+FFFD. Config:

* index (string): Name of the ES index into which the messages will be inserted. Supports interpolation of
message field values (from ‘Type’, ‘Hostname’, ‘Pid’, ‘UUID’, ‘Logger’, ‘EnvVersion’, ‘Severity’, a field
name, or a timestamp format) with the use of ‘%{}’ chars, so ‘% {Hostname }-% {Logger}-data’ would add
the records to an ES index called ‘some.example.com-processname-data’. Allows to use strftime format
codes. Defaults to ‘heka-%{%Y.%m.%d}’.

* type_name (string): Name of ES record type to create. Supports interpolation of message field values (from
‘Type’, ‘Hostname’, ‘Pid’, ‘UUID’, ‘Logger’, ‘EnvVersion’, ‘Severity’, field name, or a timestamp for-
mat) with the use of ‘%{}’ chars, so ‘%{Hostname}-stat” would create an ES record with a type of
‘some.example.com-stat’. Defaults to ‘message’.

* fields ([Jstring): The ‘fields’ parameter specifies that only specific message data should be indexed into Elas-
ticSearch. Available fields to choose are “Uuid”, “Timestamp”, “Type”, “Logger”, “Severity”, “Payload”,
“EnvVersion”, “Pid”, “Hostname”, and “DynamicFields” (where “DynamicFields” causes the inclusion of
dynamically specified message fields, see dynamic_fields). Defaults to including all of the supported

message fields.

* timestamp (string): Format to use for timestamps in generated ES documents. Allows to use strftime format
codes. Defaults to “%Y-%m-%dT%H: %M: %S .

¢ es_index_from_timestamp (bool): When generating the index name use the timestamp from the message in-
stead of the current time. Defaults to false.

* id (string): Allows you to optionally specify the document id for ES to use. Useful for overwriting existing ES
documents. If the value specified is placed within %f{ }, it will be interpolated to its Field value. Default is
allow ES to auto-generate the id.

* raw_bytes_fields ([Jstring): This specifies a set of fields which will be passed through to the encoded JSON
output without any processing or escaping. This is useful for fields which contain embedded JSON objects
to prevent the embedded JSON from being escaped as normal strings. Only supports dynamically specified
message fields.

* field_mappings (map[string]string): Maps Heka message fields to custom ES keys. Can be used to implement
a custom format in ES or implement Logstash V1. The available fields are “Timestamp”, “Uuid”, “Type”,

9% ¢

“Logger”, “Severity”, “Payload”, “EnvVersion”, “Pid” and ‘“Hostname”.

* dynamic_fields ([Jstring): This specifies which of the message’s dynamic fields should be included in the
JSON output. Defaults to including all of the messages dynamic fields. If dynamic_fields is non-
empty, then the fields list must contain “DynamicFields” or an error will be raised.

Example

[ESJsonEncoder]

index = "${Type}-%{%Y.%m.%d}"

es_index_from_timestamp = true

type_name = "%{Type}"
[ESJsonEncoder.field_mappings]
Timestamp = "@timestamp"
Severity = "level"

[ElasticSearchOutput]

88 Chapter 2. hekad Command Line Options

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html

Heka Documentation, Release 0.10.0b2

message_matcher = "Type == 'nginx.access'"
encoder = "ESJsonEncoder"
flush_interval = 50

ElasticSearch Logstash VO Encoder

Plugin Name: ESLogstashVOEncoder

This encoder serializes a Heka message into a JSON format, preceded by a separate JSON structure containing in-
formation required for ElasticSearch BulkAPI indexing. The message JSON structure uses the original (i.e. “v0”)
schema popularized by Logstash. Using this schema can aid integration with existing Logstash deployments. This
schema also plays nicely with the default Logstash dashboard provided by Kibana.

The JSON serialization is done by hand, without using Go’s stdlib JSON marshalling. This is so serialization can
succeed even if the message contains invalid UTF-8 characters, which will be encoded as U+FFFD. Config:

¢ index (string): Name of the ES index into which the messages will be inserted. Supports interpolation of
message field values (from ‘Type’, ‘Hostname’, ‘Pid’, ‘UUID’, ‘Logger’, ‘EnvVersion’, ‘Severity’, a field
name, or a timestamp format) with the use of ‘%{}’ chars, so ‘%{Hostname}-%{Logger}-data’ would
add the records to an ES index called ‘some.example.com-processname-data’. Defaults to ‘logstash-
%{2006.01.02}".

* type_name (string): Name of ES record type to create. Supports interpolation of message field values (from
‘Type’, ‘Hostname’, ‘Pid’, ‘UUID’, ‘Logger’, ‘EnvVersion’, ‘Severity’, field name, or a timestamp for-
mat) with the use of ‘%{}’ chars, so ‘%{Hostname}-stat’ would create an ES record with a type of
‘some.example.com-stat’. Defaults to ‘message’.

* use_message_type (bool): If false, the generated JSON’s @type value will match the ES record type specified
in the type_name setting. If true, the message’s Type value will be used as the @type value instead.
Defaults to false.

« fields ([Jstring): The ‘fields’ parameter specifies that only specific message data should be indexed into Elas-
ticSearch. Available fields to choose are “Uuid”, “Timestamp”, “Type”, “Logger”, “Severity”, “Payload”,
“EnvVersion”, “Pid”, “Hostname”, and “DynamicFields” (where “DynamicFields” causes the inclusion of
dynamically specified message fields, see dynamic_fields). Defaults to including all of the supported

message fields. The “Payload” field is sent to ElasticSearch as “@message”.

* timestamp (string): Format to use for timestamps in generated ES documents. Allows to use strftime format
codes. Defaults to “%Y-%m-%dT%H:%M:%S”.

¢ es_index_from_timestamp (bool): When generating the index name use the timestamp from the message in-
stead of the current time. Defaults to false.

* id (string): Allows you to optionally specify the document id for ES to use. Useful for overwriting existing ES
documents. If the value specified is placed within %{ }, it will be interpolated to its Field value. Default is
allow ES to auto-generate the id.

» raw_bytes_fields ([Jstring): This specifies a set of fields which will be passed through to the encoded JSON
output without any processing or escaping. This is useful for fields which contain embedded JSON objects
to prevent the embedded JSON from being escaped as normal strings. Only supports dynamically specified
message fields.

e dynamic_fields ([Jstring): This specifies which of the message’s dynamic fields should be included in the
JSON output. Defaults to including all of the messages dynamic fields. If dynamic_fields is non-
empty, then the fields list must contain “DynamicFields” or an error will be raised.

Example

2.8. Encoders 89

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html
http://logstash.net/
http://www.elasticsearch.org/overview/kibana/

Heka Documentation, Release 0.10.0b2

[ESLogstashVOEncoder]
es_index_from_timestamp = true
type_name = "${Type}"

[ElasticSearchOutput]

message_matcher = "Type == 'nginx.access'"
encoder = "ESLogstashVOEncoder"
flush_interval = 50

ElasticSearch Payload Encoder

Plugin Name: SandboxEncoder
File Name: lua_encoders/es_payload.lua

Prepends ElasticSearch BulkAPI index JSON to a message payload.
Config:

* index (string, optional, default “heka-%{%Y.%m.%d}’) String to use as the _index key’s value in the gen-
erated JSON. Supports field interpolation as described below.

* type_name (string, optional, default “message’) String to use as the _type key’s value in the generated JSON.
Supports field interpolation as described below.

* id (string, optional) String to use as the _id key’s value in the generated JSON. Supports field interpolation as
described below.

* es_index_from_timestamp (boolean, optional) If true, then any time interpolation (often used to generate the
ElasticSeach index) will use the timestamp from the processed message rather than the system time.

Field interpolation:
All of the string config settings listed above support message field interpolation.

Example Heka Configuration

[es_payload]

type = "SandboxEncoder"

filename = "lua_encoders/es_payload.lua"
[es_payload.config]
es_index_from_timestamp = true
index = "% {Logger}-%${%Y.%m.%d}"
type_name = "${Type}-%{Hostname}"

[ElasticSearchOutput]
message_matcher = "Type == 'mytype
encoder = "es_payload"

Example Output

{"index":{"_index":"mylogger-2014.06.05","_type":"mytype-host.domain.com"}}
{"json":"data", "extracted":"from", "message":"payload"}

Payload Encoder

Plugin Name: PayloadEncoder

920 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

The PayloadEncoder simply extracts the payload from the provided Heka message and converts it into a byte stream
for delivery to an external resource. Config:

« append_newlines (bool, optional): Specifies whether or not a newline character (i.e. n) will be appended to
the captured message payload before serialization. Defaults to true.

* prefix_ts (bool, optional): Specifies whether a timestamp will be prepended to the captured message payload
before serialization. Defaults to false.

¢ ts_from_message (bool, optional): If true, the prepended timestamp will be extracted from the message that
is being processed. If false, the prepended timestamp will be generated by the system clock at the time of
message processing. Defaults to true. This setting has no impact if prefix_ts is set to false.

¢ ts_format (string, optional): Specifies the format that should be used for prepended timestamps, using the
standard strftime string format. Defaults to [$Y/%b/%d:$H:%M:%S %z]. If the specified format string
does not end with a space character, then a space will be inserted between the formatted timestamp and the

payload.
Example
[PayloadEncoder]
append_newlines = false
prefix_ts = true
ts_format = "%Y/%m/%d %1:%M:%S%p %7"

Protobuf Encoder

Plugin Name: ProtobufEncoder

The ProtobufEncoder is used to serialize Heka message objects back into Heka’s standard protocol buffers format.
This is the format that Heka uses to communicate with other Heka instances, so one will always be included in your
Heka configuration using the default “ProtobufEncoder”” name whether specified or not.

The hekad protocol buffers message schema is defined in the message.proto file in the message package.
Config:
<none>

Example:

[ProtobufEncoder]

See also:

Protocol Buffers - Google’s data interchange format

Restructured Text Encoder

Plugin Name: RstEncoder

The RstEncoder generates a reStructuredText rendering of a Heka message, including all fields and attributes. It is
useful for debugging, especially when coupled with a Log Output.

Config:
<none>

Example:

2.8. Encoders 91

http://strftime.net/
http://code.google.com/p/protobuf/
http://docutils.sourceforge.net/rst.html

Heka Documentation, Release 0.10.0b2

[RstEncoder]

[LogOutput]
message_matcher = "TRUE"
encoder = "RstEncoder"

Sandbox Encoder

Plugin Name: SandboxEncoder

The SandboxEncoder provides an isolated execution environment for converting messages into binary data without
the need to recompile Heka. See Sandbox. Config:

e Common Sandbox Parameters

Example

[custom_json_encoder]
type = "SandboxEncoder"
filename = "path/to/custom_json_encoder.lua"

[custom_json_encoder.config]
msg_fields = ["fieldl", "field2"]

Schema Carbon Line Encoder

New in version 0.10.

Plugin Name: SandboxEncoder
File Name: lua_encoders/schema_carbon_line.lua

Converts full Heka message contents to line protocol for Carbon Plaintext API Iterates through all of the dynamic
fields to add as points (series), skipping any fields explicitly omitted using the skip_fields config option. All dynamic
fields in the Heka message are converted to separate points separated by newlines that are submitted to Carbon.

Config:

* name_prefix (string, optional, default nil) String to use as the name key’s prefix value in the generated line.
Supports message field interpolation. %f{fieldname}. Any fieldname values of “Type”, “Payload”, “Host-
name”, “Pid”, “Logger”, “Severity”, or “EnvVersion” will be extracted from the the base message schema,
any other values will be assumed to refer to a dynamic message field. Only the first value of the first
instance of a dynamic message field can be used for name name interpolation. If the dynamic field doesn’t
exist, the uninterpolated value will be left in the name. Note that it is not possible to interpolate either the
“Timestamp” or the “Uuid” message fields into the name, those values will be interpreted as referring to
dynamic message fields.

* name_prefix_delimiter (string, optional, default °.’) String to use as the delimiter between the name_prefix
and the field name. This defaults to a ”.” to use Graphite naming convention.

« skip_fields (string, optional, default nil) Space delimited set of fields that should not be included in the Car-
bon records being generated. Any fieldname values of “Type”, “Payload”, “Hostname”, “Pid”, “Logger”,
“Severity”, or “EnvVersion” will be assumed to refer to the corresponding field from the base message
schema. Any other values will be assumed to refer to a dynamic message field. The magic value “all_base”
can be used to exclude base fields from being mapped to the event altogether.

92 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

* source_value_field (string, optional, default nil) If the desired behavior of this encoder is to extract one field
from the Heka message and feed it as a single line to Carbon, then use this option to define which field
to find the value from. Make sure to set the name_prefix value to use fields from the message with field
interpolation so the full metric path in Graphite is populated. When this option is present, no other fields
besides this one will be sent to Carbon whatsoever.

Example Heka Configuration

[LinuxStatsDecoder]

type = "MultiDecoder"

subs = ["LoadAvgDecoder", "AddStaticFields"]
cascade_strategy = "all"

log_sub_errors = false

[LoadAvgPoller]

type = "FilePollingInput"
ticker_interval = 5

file_path = "/proc/loadavg"
decoder = "LinuxStatsDecoder"

[LoadAvgDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/linux_loadavg.lua"

[AddStaticFields]
type = "ScribbleDecoder"

[AddStaticFields.message_fields]
Environment = "dev"

[CarbonLineEncoder]
type = "SandboxEncoder"

filename = "lua_encoders/schema_carbon_line.lua"

[CarbonLineEncoder.config]

name_prefix = "${Environment}.%{Hostname}.%{Type}"
skip_fields = "xxall_basex* FilePath NumProcesses Environment TickerInterval"
[CarbonOutput]
type = "TcpOutput"
message_matcher = "Type =~ /stats.x/"
encoder = "CarbonLineEncoder"
address = "127.0.0.1:2003"

Example Output

dev.myhost.stats.loadavg.1lMinAvg 0.12 1434932023
dev.myhost.stats.loadavg.15MinAvg 0.18 1434932023
dev.myhost.stats.loadavg.5MinAvg 0.11 1434932023

Schema InfluxDB Encoder

New in version 0.8.

Plugin Name: SandboxEncoder
File Name: lua_encoders/schema_influx.lua

2.8. Encoders 93

Heka Documentation, Release 0.10.0b2

Converts full Heka message contents to JSON for InfluxDB HTTP API. Includes all standard message fields and
iterates through all of the dynamically specified fields, skipping any bytes fields or any fields explicitly omitted using
the skip_fields config option.

Note: This encoder is intended for use with InfluxDB versions prior to 0.9. If you’re working with InfluxDB v0.9 or
greater, you’ll want to use the Schema InfluxDB Line Encoder instead.

Config:

* series (string, optional, default “series’”) String to use as the series key’s value in the generated JSON. Sup-
ports interpolation of field values from the processed message, using %{fieldname}. Any fieldname values
of “Type”, “Payload”, “Hostname”, “Pid”, “Logger”, “Severity”, or “EnvVersion” will be extracted from
the the base message schema, any other values will be assumed to refer to a dynamic message field. Only
the first value of the first instance of a dynamic message field can be used for series name interpolation.
If the dynamic field doesn’t exist, the uninterpolated value will be left in the series name. Note that it is
not possible to interpolate either the “Timestamp” or the “Uuid” message fields into the series name, those
values will be interpreted as referring to dynamic message fields.

« skip_fields (string, optional, default ‘°’) Space delimited set of fields that should not be included in the In-
fluxDB records being generated. Any fieldname values of “Type”, “Payload”, “Hostname”, “Pid”, “Log-
ger”, “Severity”, or “EnvVersion” will be assumed to refer to the corresponding field from the base message
schema. Any other values will be assumed to refer to a dynamic message field.

* multi_series (boolean, optional, default false) Instead of submitting all fields to InfluxDB as attributes of a
single series, submit a series for each field that sets a “value” attribute to the value of the field. This
also sets the name attribute to the series value with the field name appended to it by a ”.”. This is the
recommended by InfluxDB for v0.9 onwards as it is found to provide better performance when querying
and aggregating across multiple series.

¢ exclude_base_fields (boolean, optional, default false) Don’t send the base fields to InfluxDB. This saves stor-
age space by not including base fields that are mostly redundant and unused data. If skip_fields includes
base fields, this overrides it and will only be relevant for skipping dynamic fields.

Example Heka Configuration

[influxdb]

type = "SandboxEncoder"

filename = "lua_encoders/schema_influx.lua"
[influxdb.config]
series = "heka.%{Logger}"
skip_fields = "Pid EnvVersion"

[InfluxOutput]

message_matcher = "Type == 'influxdb'"

encoder = "influxdb"

type = "HttpOutput"

address = "http://influxdbserver.example.com:8086/db/databasename/series"
username = "influx_username"

password = "influx_password"

Example Output

[{"points":[[1.409378221e+21,"log","test","systemName",“TcpInput",B,l,"test"]],"name":"ﬁeka.MyLogger

Schema InfluxDB Line Encoder

New in version 0.10.

94 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

Plugin Name: SandboxEncoder
File Name: lua_encoders/schema_influx_line.lua

Converts full Heka message contents to line protocol for InfluxDB HTTP write API (new in InfluxDB v0.9.0). Op-
tionally includes all standard message fields as tags or fields and iterates through all of the dynamic fields to add as
points (series), skipping any fields explicitly omitted using the skip_fields config option. It can also map any Heka
message fields as tags in the request sent to the InfluxDB write API, using the fag_fields config option. All dynamic
fields in the Heka message are converted to separate points separated by newlines that are submitted to InfluxDB.

Note: This encoder is intended for use with InfluxDB versions 0.9 or greater. If you're working with InfluxDB
versions prior to 0.9, you’ll want to use the Schema InfluxDB Encoder instead.

Config:

* decimal_precision (string, optional, default <“6’) String that is used in the string.format function to define the
number of digits printed after the decimal in number values. The string formatting of numbers is forced
to print with floating points because InfluxDB will reject values that change from integers to floats and
vice-versa. By forcing all numbers to floats, we ensure that InfluxDB will always accept our numerical
values, regardless of the initial format.

* name_prefix (string, optional, default nil) String to use as the name key’s prefix value in the generated line.
Supports message field interpolation. %f{fieldname}. Any fieldname values of “Type”, “Payload”, “Host-
name”, “Pid”, “Logger”, “Severity”, or “EnvVersion” will be extracted from the the base message schema,
any other values will be assumed to refer to a dynamic message field. Only the first value of the first
instance of a dynamic message field can be used for name name interpolation. If the dynamic field doesn’t
exist, the uninterpolated value will be left in the name. Note that it is not possible to interpolate either the
“Timestamp” or the “Uuid” message fields into the name, those values will be interpreted as referring to
dynamic message fields.

¢ name_prefix_delimiter (string, optional, default nil) String to use as the delimiter between the name_prefix

and the field name. This defaults to a blank string but can be anything else instead (such as ”.” to use
Graphite-like naming).

skip_fields (string, optional, default nil) Space delimited set of fields that should not be included in the In-
fluxDB measurements being generated. Any fieldname values of “Type”, “Payload”, “Hostname”, “Pid”,
“Logger”, “Severity”, or “EnvVersion” will be assumed to refer to the corresponding field from the base
message schema. Any other values will be assumed to refer to a dynamic message field. The magic value
“all_base” can be used to exclude base fields from being mapped to the event altogether (useful if you
don’t want to use tags and embed them in the name_prefix instead).

 source_value_field (string, optional, default nil) If the desired behavior of this encoder is to extract one field
from the Heka message and feed it as a single line to InfluxDB, then use this option to define which field
to find the value from. Be careful to set the name_prefix field if this option is present or no measurement
name will be present when trying to send to InfluxDB. When this option is present, no other fields besides
this one will be sent to InfluxDB as a measurement whatsoever.

tag_fields (string, optional, default “all_base”) Take fields defined and add them as tags of the measure-
ment(s) sent to InfluxDB for the message. The magic values “all” and “all_base” are used to map all
fields (including taggable base fields) to tags and only base fields to tags, respectively. If those magic
values aren’t used, then only those fields defined will map to tags of the measurement sent to InfluxDB.
The tag_fields values are independent of the skip_fields values and have no affect on each other. You can
skip fields from being sent to InfluxDB as measurements, but still include them as tags.

* timestamp_precision (string, optional, default “ms”) Specify the timestamp precision that you want the
event sent with. The default is to use milliseconds by dividing the Heka message timestamp by 1e6,

2.8. Encoders 95

Heka Documentation, Release 0.10.0b2

but this math can be altered by specifying one of the precision values supported by the InfluxDB write API
(ms, s, m, h). Other precisions supported by InfluxDB of n and u are not yet supported.

¢ value_field_key (string, optional, default ‘“value”) This defines the name of the InfluxDB measurement. We
default this to “value” to match the examples in the InfluxDB documentation, but you can replace that with

anything else that you prefer.

Example Heka Configuration

[LoadAvgPoller]

type = "FilePollingInput"
ticker_interval = 5

file_path = "/proc/loadavg"
decoder = "LinuxStatsDecoder"

[LoadAvgDecoder]
type = "SandboxDecoder"
filename = "lua_decoders/linux_loadavg.lua"

[LinuxStatsDecoder]

type = "MultiDecoder"

subs = ["LoadAvgDecoder", "AddStaticFields"]
cascade_strategy = "all"

log_sub_errors = false

[AddStaticFields]
type = "ScribbleDecoder"

[AddStaticFields.message_fields]
Environment = "dev"

[InfluxdbLineEncoder]
type = "SandboxEncoder"
filename = "lua_encoders/schema_influx_line.lua"

[InfluxdbLineEncoder.config]

skip_fields = "xxall_basex* FilePath NumProcesses
tag_fields = "Hostname Environment"
timestamp_precision= "s"

[InfluxdbOutput]

type = "HttpOutput"

message_matcher = "Type =~ /stats.x/"
encoder = "InfluxdbLineEncoder"

Environment TickerInterval"

address = "http://influxdbserver.example.com:8086/write?db=mydb&rp=mypolicy&precision=s'

username = "influx_username"
password = "influx_password"

Example Output

5MinAvg, Hostname=myhost, Environment=dev value=0.110000 1434932024
1MinAvg, Hostname=myhost, Environment=dev value=0.110000 1434932024
15MinAvg, Hostname=myhost, Environment=dev value=0.170000 1434932024

StatMetric InfluxDB Encoder

New in version 0.7.

96 Chapter 2. hekad Command Line Options

Heka Documentation, Release 0.10.0b2

Plugin Name: SandboxEncoder
File Name: lua_encoders/statmetric_influx.lua

Extracts data from message fields in heka.statmetric messages generated by a Stat Accumulator Input and generates
JSON suitable for use with InfluxDB’s HTTP API. StatAccumInput must be configured with emit_in_fields = true for
this encoder to work correctly.

Config:
<none>

Example Heka Configuration

[statmetric-influx—encoder]

type = "SandboxEncoder"

filename = "lua_encoders/statmetric_influx.lua"

[influx]

type = "HttpOutput"

message_matcher = "Type == 'heka.statmetric'"

address = "http://myinfluxserver.example.com:8086/db/stats/series"
encoder = "statmetric-influx—-encoder"

username = "influx_username"

password = "influx_password"

Example Output

’[{"points":[[1408404848,78271]],"name":"stats.counters.OOOOOO.rate","columns":["time","#alue"]},{"po:

2.9 Outputs

2.9.1 Common Output Parameters
There are some configuration options that are universally available to all Heka output plugins. These will be consumed
by Heka itself when Heka initializes the plugin and do not need to be handled by the plugin-specific initialization code.

* message_matcher (string, optional): Boolean expression, when evaluated to true passes the message to the
filter for processing. Defaults to matching nothing. See: Message Matcher Syntax

* message_signer (string, optional): The name of the message signer. If specified only messages with this
signer are passed to the filter for processing.

* ticker_interval (uint, optional): Frequency (in seconds) that a timer event will be sent to the filter. Defaults to
not sending timer events.

New in version 0.6.

* encoder (string, optional): Encoder to be used by the output. This should refer to the name of an encoder
plugin section that is specified elsewhere in the TOML configuration. Messages can be encoded using the
specified encoder by calling the OutputRunner’s Encode() method.

« use_framing (bool, optional): Specifies whether or not Heka’s Stream Framing should be applied to the binary
data returned from the OutputRunner’s Encode() method.

New in version 0.7.

* can_exit (bool, optional) Whether or not this plugin can exit without causing Heka to shutdown. Defaults to
false.

2.9. Outputs 97

http://influxdb.com/docs/v0.7/api/reading_and_writing_data.html

Heka Documentation, Release 0.10.0b2

New in version 0.10.

* use_buffering (bool, optional) If true, all messages delivered to this output will be buffered to disk before
delivery, preventing back pressure and allowing retries in cases of message processing failure. Defaults to
false, unless otherwise specified by the individual output’s documentation.

¢ buffering (QueueBufferConfig, optional) A sub-section that specifies the settings to be used for the buffering
behavior. This will only have any impact if use_buffering is set to true. See Configuring Buffering.

2.9.2 Available Output Plugins

AMQP Output

Plugin Name: AMQPOQOutput

Connects to a remote AMQP broker (RabbitMQ) and sends messages to the specified queue. The message is serialized
if specified, otherwise only the raw payload of the message will be sent. As AMQP is dynamically programmable, the
broker topology needs to be specified.

Config:
* url (string): An AMQP connection string formatted per the RabbitMQ URI Spec.
* exchange (string): AMQP exchange name
» exchange_type (string): AMQP exchange type (fanout, direct, topic, or headers).

¢ exchange_durability (bool): Whether the exchange should be configured as a durable exchange. Defaults to
non-durable.

* exchange_auto_delete (bool): Whether the exchange is deleted when all queues have finished and there is no
publishing. Defaults to auto-delete.

* routing_Kkey (string): The message routing key used to bind the queue to the exchange. Defaults to empty
string.

* persistent (bool): Whether published messages should be marked as persistent or transient. Defaults to non-
persistent.

* retries (RetryOptions, optional): A sub-section that specifies the settings to be used for restart behavior. See
Configuring Restarting Behavior

New in version 0.6.

* content_type (string): MIME content type of the payload used in the AMQP header. Defaults to “applica-
tion/hekad”.

* encoder (string, optional) Specifies which of the registered encoders should be used for converting Heka mes-
sages to binary data that is sent out over the AMQP connection. Defaults to the always available “Proto-
bufEncoder”.

* use_framing (bool, optional): Specifies whether or not the encoded data sent out over the TCP connection
should be delimited by Heka’s Stream Framing. Defaults to true.

New in version 0.6.

¢ tls (TlsConfig): An optional sub-section that specifies the settings to be used for any SSL/TLS encryption. This
will only have any impact if URL uses the AMQPS URI scheme. See Configuring TLS.

Example (that sends log lines from the logger):

98 Chapter 2. hekad Command Line Options

http://www.rabbitmq.com/uri-spec.html

Heka Documentation, Release 0.10.0b2

[AMQOPOutput]

url = "amgp://guest:guest@rabbitmg/"

exchange = "testout"

exchange_type = "fanout"

message_matcher = 'Logger == "TestWebserver"'

Carbon Output

Plugin Name: CarbonOutput

CarbonOutput plugins parse the “stat metric” messages generated by a StatAccumulator and write the extracted
counter, timer, and gauge data out to a graphite compatible carbon daemon. Output is written over a TCP or UDP
socket using the plaintext protocol.

Config:

 address (string): An IP address:port on which this plugin will write to. (default: “localhost:2003”)
New in version 0.5.

¢ protocol (string): “tcp” or “udp” (default: “tcp”)

* tcp_keep_alive (bool) if set, keep the TCP connection open and reuse it until a failure; then retry (default:

false)
Example:
[CarbonOutput]
message_matcher = "Type == 'heka.statmetric'"
address = "localhost:2003"
protocol = "udp"

Dashboard Output

Plugin Name: DashboardOutput

Specialized output plugin that listens for certain Heka reporting message types and generates JSON data which is
made available via HTTP for use in web based dashboards and health reports.

Config:
* ticker_interval (uint): Specifies how often, in seconds, the dashboard files should be updated. Defaults to 5.

* message_matcher (string): Defaults to “Type == ‘heka.all-report’ || Type == ‘heka.sandbox-output’ 1| Type
== ‘heka.sandbox-terminated”’. Not recommended to change this unless you know what you’re doing.

 address (string): An IP address:port on which we will serve output via HTTP. Defaults to “0.0.0.0:4352”.

» working_directory (string): File system directory into which the plugin will write data files and from which
it will serve HTTP. The Heka process must have read / write access to this directory. Relative paths will
be evaluated relative to the Heka base directory. Defaults to $(BASE_DIR)/dashboard.

* static_directory (string): File system directory where the Heka dashboard source code can be found. The
Heka process must have read access to this directory. Relative paths will be evaluated relative to the Heka
base directory. Defaults to ${SHARE_DIR}/dasher.

New in version 0.7.

* headers (subsection, optional): It is possible to inject arbitrary HTTP headers into each outgoing response
by adding a TOML subsection entitled “headers” to you HttpOutput config section. All entries in the
subsection must be a list of string values.

2.9. Outputs 99

http://graphite.wikidot.com/
http://graphite.wikidot.com/carbon
http://graphite.readthedocs.org/en/1.0/feeding-carbon.html#the-plaintext-protocol

Heka Documentation, Release 0.10.0b2

Example:

[DashboardOutput]
ticker_interval = 30

ElasticSearch Output

Plugin Name: ElasticSearchOutput

Output plugin that uses HTTP or UDP to insert records into an ElasticSearch database. Note that it is up to the specified
encoder to both serialize the message into a JSON structure and to prepend that with the appropriate ElasticSearch
BulkAPI indexing JSON. Usually this output is used in conjunction with an ElasticSearch-specific encoder plugin,
such as ElasticSearch JSON Encoder, ElasticSearch Logstash VO Encoder, or ElasticSearch Payload Encoder.

Config:

flush_interval (int): Interval at which accumulated messages should be bulk indexed into ElasticSearch, in
milliseconds. Defaults to 1000 (i.e. one second).

flush_count (int): Number of messages that, if processed, will trigger them to be bulk indexed into Elastic-
Search. Defaults to 10.

server (string): ElasticSearch server URL. Supports http://, https:// and udp:// urls. Defaults to
“http://localhost:9200”.

connect_timeout (int): Time in milliseconds to wait for a server name resolving and connection to ES. It’s
included in an overall time (see ‘http_timeout’ option), if they both are set. Default is 0 (no timeout).

http_timeout (int): Time in milliseconds to wait for a response for each http post to ES. This may drop data as
there is currently no retry. Default is O (no timeout).

http_disable_keepalives (bool): Specifies whether or not re-using of established TCP connections to Elastic-
Search should be disabled. Defaults to false, that means using both HTTP keep-alive mode and TCP
keep-alives. Set it to true to close each TCP connection after ‘flushing” messages to ElasticSearch.

username (string): The username to use for HTTP authentication against the ElasticSearch host. Defaults to
“” (i. e. no authentication).

password (string): The password to use for HTTP authentication against the ElasticSearch host. Defaults to
“” (i. e. no authentication).

New in version 0.9.

tls (TIsConfig): An optional sub-section that specifies the settings to be used for any SSL/TLS encryption. This
will only have any impact if URL uses the HTTPS URI scheme. See Configuring TLS.

use_buffering (bool, optional): Buffer records to a disk-backed buffer on the Heka server before writing them
to ElasticSearch. Defaults to true.

buffering (QueueBufferConfig, optional): All of the buffering config options are set to the standard default
options.

Example:

[ElasticSearchOutput]

message_matcher = "Type == 'sync.log

server = "http://es-server:9200"
flush_interval = 5000
flush_count = 10

encoder = "ESJsonEncoder"

100

Chapter 2. hekad Command Line Options

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html
http://
https://

Heka Documentation, Release 0.10.0b2

File Output

Plugin Name: FileOutput
Writes message data out to a file system.
Config:

 path (string): Full path to the output file. If date rotation is in use, then the output file path can support strftime
syntax to embed timestamps in the file path: http://strftime.org

¢ perm (string, optional): File permission for writing. A string of the octal digit representation. Defaults to
“644”.

* folder_perm (string, optional): Permissions to apply to directories created for FileOutput’s parent directory if
it doesn’t exist. Must be a string representation of an octal integer. Defaults to “700”.

¢ flush_interval (uint32, optional): Interval at which accumulated file data should be written to disk, in mil-
liseconds (default 1000, i.e. 1 second). Set to O to disable.

¢ flush_count (uint32, optional): Number of messages to accumulate until file data should be written to disk
(default 1, minimum 1).

* flush_operator (string, optional): Operator describing how the two parameters ‘“flush_interval” and
“flush_count” are combined. Allowed values are “AND” or “OR” (default is “AND”).

New in version 0.6.

« use_framing (bool, optional): Specifies whether or not the encoded data sent out over the TCP connection
should be delimited by Heka’s Stream Framing. Defaults to true if a ProtobufEncoder is used, false other-
wise.

New in version 0.9.

¢ rotation_interval (uint32, optional): Interval at which the output file should be rotated, in hours. Only the
following values are allowed: 0, 1, 4, 12, 24 (set to 0 to disable). The files will be named relative to
midnight of the day. Defaults to 0, i.e. disabled.

Example:

[counter_file]

type = "FileOutput"

message_matcher = "Type == 'heka.counter-output'"
path = "/var/log/heka/counter—-output.log"

perm = "666"

flush_count = 100

flush_operator = "OR"

encoder = "PayloadEncoder"

New in version 0.6.

HTTP Output

Plugin Name: HttpOutput

A very simple output plugin that uses HTTP GET, POST, or PUT requests to deliver data to an HTTP endpoint. When
using POST or PUT request methods the encoded output will be uploaded as the request body. When using GET the
encoded output will be ignored.

Th